Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making better memories

30.01.2012
Demonstration of a rare combination of electric and magnetic properties in a now readily producible material could improve electronic memory devices

An electric field can displace the cloud of electrons surrounding each atom of a solid. In an effect known as polarization, the cloud centers move away slightly from the positively charged nuclei, which radically changes the optical properties of the solid. Materials that can maintain this polarization, even when the external electric field is removed, are known as ferroelectrics and they could provide a novel route to higher-density memory devices.


Figure 1: Strontium barium manganite’s properties come from its manganese atoms (purple sphere). Spin (black arrow) endows the material with its magnetic properties, while the displacement of the ion from the center of the cubic lattice (purple arrow) makes it ferroelectric. Oxygen atoms are shown as red spheres and strontium or barium atoms are green. Copyright : 2012 Yasujiro Taguchi

“The function of ferroelectric materials is much expanded if they are also magnetic, and if there is a strong coupling between polarization and magnetization,” explains Yasujiro Taguchi from the RIKEN Advanced Science Institute in Wako. Taguchi and his colleagues from RIKEN, and several other Japanese research institutes, recently demonstrated experimentally that the material strontium barium manganite ((Sr,Ba)MnO3) has this rare combination of properties1.

Previous experimental studies on (Sr,Ba)MnO3 did not identify any signs of the ferroelectricity promised by theoretical simulations. The problem was an insufficient ratio of barium to strontium atoms: conventional crystal growth techniques had produced material with only a maximum ratio of 1:4. Taguchi and his colleagues therefore developed a new two-stage growth technique that enabled them to increase the barium content to 50%. By comparing the properties of crystals with different levels of barium content, they identified a transition to a ferroelectric state at a content ratio of between 40 and 45%.

Strontium barium manganite has a so-called perovskite crystal arrangement, which is characterized by a repeating cubic structure (Fig. 1). Manganese atoms are located at the center of the crystal and oxygen atoms are situated in the middle of each of the six sides. Either a strontium or a barium atom sits on each corner of the cube. The spin, or rotation, of an electron in the manganese ions makes the crystal magnetic. Ferroelectricity arises because the manganese ions are displaced slightly from the center of the cube. “Therefore the manganese ions are responsible for both polarization and magnetism and thus a strong coupling between the two emerges,” explains Taguchi.

Materials that are both ferroelectric and have magnetic properties are called multiferroics. The multiferroic materials identified so far have either strong coupling between electricity and magnetism but small polarization, or large polarization with weak coupling. “We have now discovered a multiferroic material that has both [strong coupling and large polarization],” says Taguchi. “These properties are necessary requirements if multiferroic materials are to be applied to devices. One possible example is low-power-consumption memory devices.”

The corresponding author for this highlight is based at the Exploratory Materials Team, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>