Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University opens new vista in smart materials: Fully reversible functionalization of inorganic nanotubes

18.08.2010
Scientists at Johannes Gutenberg University Mainz (JGU), Germany have devised a tool which allows fully reversible binding of metal oxides to inorganic nanotubes

Inorganic chalcogenide (WS2) nanotubes have shown revolutionary chemical and physical properties that offer a broad range of applications. They are ultra-strong impact-resistant materials.

This makes them excellent candidates for producing bullet proof vests, helmets, car bumpers, high strength glues and binders, and other safety equipment. The unique nanotubes are up to four to five times stronger than steel and about six times stronger than Kevlar, the nowadays most popular material used for bullet proof vests.

In addition to ballistic protection materials and polymer composites, WS2 nanotubes can be implemented in nanoelectronics, fuel cells, ultra-filtration membranes, and catalysts. Their optical properties allow various other applications in fields such as nanolithography or photocatalysis.

Up to now a major obstacle in the application of chalcogenide nanotubes has been their inherently inertness to chemical and biological modification and functionalization. Their potential use in composite materials might be greatly enhanced by improving the chalcogenide/matrix interface bonding. Scientists at Johannes Gutenberg University Mainz (JGU) devised a novel modification strategy based on metal oxide nanoparticles as universal vehicles for a reversible functionalization of WS2 nanotubes. The groundbreaking research conducted in the group of Wolfgang Tremel, Professor in the Department of Chemistry at JGU, and Dr. Ute Kolb at the Electron Microscopy Center was published in advance online on August 16 and will appear on the cover of the journal Angewandte Chemie.

The strategy underlying the reversible binding between chalcogenide nanotubes and metal oxide nanoparticles is based on "Pearson hardness," an elementary concept introduced more than 40 years ago to classify the Lewis acids and bases (especially the various commonly used metal ions and ligands) into three broad categories - hard, soft, and borderline. Metal oxides nanoparticles stick to the surface of chalcogenide nanotubes. As these metal oxide particles can carry many other functional molecules (e.g. polymers, biomolecules) as well, they can act as interfacial glue between the nanotubes and organic matter. This interfacial glue, however, can be detached purposely by the addition of substances that exhibit a stronger binding to the oxide nanoparticles than the WS2 nanotubes.

Hitherto all strategies of bonding to carbon or chalcogenide nanotubes were irreversible, i.e. once molecules have been bound they cannot be released again. The new, fully reversible attachment/detachment process will be applied in "smart materials" the toughness of which is reduced upon the influence of an external trigger. The findings will also provide a better understanding of fundamental friction issues, and - from a more practical point of view - offer a new tool for assembling nanotubes into devices and study the forces acting on them.

Publication:
Jugal K. Sahoo, Muhammad N. Tahir, Aswani Yella, Thomas D. Schladt, Enrico Mugnaoli, Ute Kolb, Wolfgang Tremel: Reversible Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on Pearson Hardness
Angewandte Chemie, published online on August 16, 2010,
doi:10.1002/anie.20100774

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13759.php
http://dx.doi.org/10.1002/anie.201000774

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>