Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University opens new vista in smart materials: Fully reversible functionalization of inorganic nanotubes

18.08.2010
Scientists at Johannes Gutenberg University Mainz (JGU), Germany have devised a tool which allows fully reversible binding of metal oxides to inorganic nanotubes

Inorganic chalcogenide (WS2) nanotubes have shown revolutionary chemical and physical properties that offer a broad range of applications. They are ultra-strong impact-resistant materials.

This makes them excellent candidates for producing bullet proof vests, helmets, car bumpers, high strength glues and binders, and other safety equipment. The unique nanotubes are up to four to five times stronger than steel and about six times stronger than Kevlar, the nowadays most popular material used for bullet proof vests.

In addition to ballistic protection materials and polymer composites, WS2 nanotubes can be implemented in nanoelectronics, fuel cells, ultra-filtration membranes, and catalysts. Their optical properties allow various other applications in fields such as nanolithography or photocatalysis.

Up to now a major obstacle in the application of chalcogenide nanotubes has been their inherently inertness to chemical and biological modification and functionalization. Their potential use in composite materials might be greatly enhanced by improving the chalcogenide/matrix interface bonding. Scientists at Johannes Gutenberg University Mainz (JGU) devised a novel modification strategy based on metal oxide nanoparticles as universal vehicles for a reversible functionalization of WS2 nanotubes. The groundbreaking research conducted in the group of Wolfgang Tremel, Professor in the Department of Chemistry at JGU, and Dr. Ute Kolb at the Electron Microscopy Center was published in advance online on August 16 and will appear on the cover of the journal Angewandte Chemie.

The strategy underlying the reversible binding between chalcogenide nanotubes and metal oxide nanoparticles is based on "Pearson hardness," an elementary concept introduced more than 40 years ago to classify the Lewis acids and bases (especially the various commonly used metal ions and ligands) into three broad categories - hard, soft, and borderline. Metal oxides nanoparticles stick to the surface of chalcogenide nanotubes. As these metal oxide particles can carry many other functional molecules (e.g. polymers, biomolecules) as well, they can act as interfacial glue between the nanotubes and organic matter. This interfacial glue, however, can be detached purposely by the addition of substances that exhibit a stronger binding to the oxide nanoparticles than the WS2 nanotubes.

Hitherto all strategies of bonding to carbon or chalcogenide nanotubes were irreversible, i.e. once molecules have been bound they cannot be released again. The new, fully reversible attachment/detachment process will be applied in "smart materials" the toughness of which is reduced upon the influence of an external trigger. The findings will also provide a better understanding of fundamental friction issues, and - from a more practical point of view - offer a new tool for assembling nanotubes into devices and study the forces acting on them.

Publication:
Jugal K. Sahoo, Muhammad N. Tahir, Aswani Yella, Thomas D. Schladt, Enrico Mugnaoli, Ute Kolb, Wolfgang Tremel: Reversible Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on Pearson Hardness
Angewandte Chemie, published online on August 16, 2010,
doi:10.1002/anie.20100774

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13759.php
http://dx.doi.org/10.1002/anie.201000774

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>