Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Control of Anomalous Hall Effect Induced by Spin Chirality

29.06.2011
Researchers from Institute for Solid State Physics, the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) have succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality, which might be a step toward non-volatile memory based on the AHE.

*Note: This news was first mentioned in the June 2011 issue of Nanotech Japan Update*

Institute for Solid State Physics, the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) announced, on May 23, 2011, that researchers from both institutes succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality. Details were published in Physical Review Letters.

Since spin chirality (solid angle formed by spin) is accompanied with a strong virtual magnetic field, AHE is observed without applying field. Such large Hall voltages under weak magnetic fields may lead to a promising nonvolatile memory with reduced power dissipation because of the absence of hysteresis loss.

In the present work, AHE of the chiral spin states of Pr2Ir2O7 was found to appear below 1.5 K at a zero magnetic field with hysteresis most pronounced for fields cycled along the [111] direction. A large positive magnetoresisitance was also observed only for fields along the [111] direction. These observa-tions suggest the reconstruction of the electronic structure of the conduction electrons by the field-induced spin texture.

The present results, the authors of the paper expect, may provide a mean to control magnetically the AHE induced by spin chirality, which might be a step toward nonvolatile memory based on the AHE.

Journal information

L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, "Anisotropic Hysteretic Hall Effect and Magnetic Control of Chiral Domains in the Chiral Spin States of Pr2Ir2O7", Physical Review Letters, Vol. 106, No. 21, p. 217204 (2011) [4 pages] Published May 26, 2010

https://nanonet.nims.go.jp/english/modules/news/article.php?a_id=750

Mikiko Tanifuji | Research asia research news
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>