Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic Control of Anomalous Hall Effect Induced by Spin Chirality

Researchers from Institute for Solid State Physics, the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) have succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality, which might be a step toward non-volatile memory based on the AHE.

*Note: This news was first mentioned in the June 2011 issue of Nanotech Japan Update*

Institute for Solid State Physics, the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) announced, on May 23, 2011, that researchers from both institutes succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality. Details were published in Physical Review Letters.

Since spin chirality (solid angle formed by spin) is accompanied with a strong virtual magnetic field, AHE is observed without applying field. Such large Hall voltages under weak magnetic fields may lead to a promising nonvolatile memory with reduced power dissipation because of the absence of hysteresis loss.

In the present work, AHE of the chiral spin states of Pr2Ir2O7 was found to appear below 1.5 K at a zero magnetic field with hysteresis most pronounced for fields cycled along the [111] direction. A large positive magnetoresisitance was also observed only for fields along the [111] direction. These observa-tions suggest the reconstruction of the electronic structure of the conduction electrons by the field-induced spin texture.

The present results, the authors of the paper expect, may provide a mean to control magnetically the AHE induced by spin chirality, which might be a step toward nonvolatile memory based on the AHE.

Journal information

L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, "Anisotropic Hysteretic Hall Effect and Magnetic Control of Chiral Domains in the Chiral Spin States of Pr2Ir2O7", Physical Review Letters, Vol. 106, No. 21, p. 217204 (2011) [4 pages] Published May 26, 2010

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>