Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Control of Anomalous Hall Effect Induced by Spin Chirality

29.06.2011
Researchers from Institute for Solid State Physics, the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) have succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality, which might be a step toward non-volatile memory based on the AHE.

*Note: This news was first mentioned in the June 2011 issue of Nanotech Japan Update*

Institute for Solid State Physics, the University of Tokyo and RIKEN (Institute of Physical and Chemical Research) announced, on May 23, 2011, that researchers from both institutes succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality. Details were published in Physical Review Letters.

Since spin chirality (solid angle formed by spin) is accompanied with a strong virtual magnetic field, AHE is observed without applying field. Such large Hall voltages under weak magnetic fields may lead to a promising nonvolatile memory with reduced power dissipation because of the absence of hysteresis loss.

In the present work, AHE of the chiral spin states of Pr2Ir2O7 was found to appear below 1.5 K at a zero magnetic field with hysteresis most pronounced for fields cycled along the [111] direction. A large positive magnetoresisitance was also observed only for fields along the [111] direction. These observa-tions suggest the reconstruction of the electronic structure of the conduction electrons by the field-induced spin texture.

The present results, the authors of the paper expect, may provide a mean to control magnetically the AHE induced by spin chirality, which might be a step toward nonvolatile memory based on the AHE.

Journal information

L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, "Anisotropic Hysteretic Hall Effect and Magnetic Control of Chiral Domains in the Chiral Spin States of Pr2Ir2O7", Physical Review Letters, Vol. 106, No. 21, p. 217204 (2011) [4 pages] Published May 26, 2010

https://nanonet.nims.go.jp/english/modules/news/article.php?a_id=750

Mikiko Tanifuji | Research asia research news
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>