Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-Grade Cotton Offers More Ecologically-Friendly Way to Clean Oil Spills

21.05.2013
When it comes to cleaning up the next massive crude oil spill, one of the best and most eco-friendly solutions for the job may be low-grade cotton from West Texas.

Seshadri Ramkumar, lead author of the study and manager of the Nonwovens and Advanced Materials Laboratory at The Institute of Environmental and Human Health (TIEHH), said he and his colleagues found that low-micronaire cotton – one of the lowest-quality types of cotton – is most effective at picking up oil. A pound of the low-micronaire cotton can pick up more than 30 pounds of crude oil, and its natural waxiness helps to repel water.

The new study includes some of the first scientific data on unprocessed raw cotton’s use in crude oil spills, and was published in the ACS journal Industrial & Engineering Chemistry Research.

“In this region, about 10 percent of the cotton grown in West Texas is low micronaire,” he said. “It doesn’t take a dye well, so it gets discounted. However, because low-micronaire cotton is less mature, it shrinks, and you are able to pack more fiber into a given area. The strength here is that the low-micronaire cotton absorbs the most crude oil. The oil is not only stuck to surface, the oil gets absorbed into the fiber.”

Ron Kendall, director emeritus at TIEHH and special assistant to the president, said the Deepwater Horizon disaster emphasized the need for better ways of cleaning up oil spills.

“One of the things we realized from Deepwater Horizon is we didn’t have the best tools for cleanup, and the technology wasn’t right for the booms,” Kendall said. “This discovery that low-micronaire cotton, which is the least valuable cotton, can absorb as much crude oil as it does is a breakthrough discovery. It gives us an excellent tool for cleanup of shorelines, animals and ecologically sensitive areas as well as a new technology for booms that can stop oil sheen moving into wetlands. And it’s biodegradable. This is just another added bonus use for low-end West Texas cotton. Now, farmers have a new use for low-end cotton in a very significant way for oil spill cleanup. It’s a major discovery from scientific and economic standpoints.”

Scientists have done extensive studies on fibers such as barley straw, kapok, polypropylene wool, Ramkumar said. However, big gaps existed in knowledge about their basic crude oil-uptake mechanisms and no data existed on unprocessed raw cotton. His team decided to fill those gaps with research on the oil sorption properties of low-micronaire cotton.

The cotton fibers take up oil in multiple ways, including both absorption and adsorption in which oil sticks to the outer surface of the cotton fiber.

“Our interest was to see how raw cotton straight from the bale picks up the crude oil as well as determining the governing mechanism behind picking up the crude oil,” he said. “We show through sophisticated testing that low-micronaire cotton is much finer and can pick up more crude oil. And crude oil is very different from refined motor oil. It’s very dense and releases toxic vapors. It’s not as easy to get picked up. In contrast to synthetic sorbents, raw cotton with its high crude oil sorption capacity and positive environmental footprint make it an ecologically friendly sorbent for oil spill cleanups.”

Laboratory work using crude oil was performed by graduate student Vinitkumar Singh. Both Cotton Incorporated and The CH Foundation contributed funds to this research. For a PDF of this research, contact John Davis.

Find Texas Tech news, experts and story ideas at www.media.ttu.edu and on Twitter @TexasTechMedia.

CONTACT: Seshadri S. Ramkumar, associate professor, The Institute for Environmental and Human Health, Texas Tech University, (806) 885-0228 or s.ramkumar@ttu.edu, Ron Kendall, professor and special assistant to the president, Office of the President, Texas Tech University, (806) 885-0238 or ron.kendall@tiehh.ttu.edu.

John Davis | Newswise
Further information:
http://www.ttu.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>