Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long Polymer Chains Dance the Conga

Understanding the steps to the intricate dance inside a cell is essential to one day choreographing the show. By studying the molecules that give a cell its structure, University of Illinois researchers are moving closer to understanding one of those steps: the conga line.

Led by Steve Granick, Founder Professor of Engineering and professor of materials science and engineering, of chemistry, of chemical and biomolecular engineering, and of physics at the U. of I., the team will publish its findings in the journal Physical Review Letters.

Long chains of the molecule actin form filaments that are a key component of the matrix that give cells structure. They play a role in numerous cellular processes, including signaling and transport. Similar polymers are used in applications from tires to contact lenses to the gels used for DNA and protein analyses.

Long actin filaments display snakelike movement, but their serpentine wriggling is limited by crowding from other filaments in the matrix. Researchers have long assumed that actin filaments could move anywhere within a confined cylinder of space, like a snake slithering through a pipe.

However, Granick and his research group have created a new model showing that the filaments’ track isn’t a perfect cylinder after all. Rather than a snake in a pipe, a filament moves more like a conga line on a crowded dance floor: Sometimes it’s a tight squeeze.

To track the filaments’ motion, the Illinois team used a novel approach. In the past researchers have observed the entire large molecule, which was like trying to figure out a conga line’s trajectory by watching the entire crowd writhing on the dance floor.

“But,” Granick said, “if I’m able to follow just one person in the crowd, I know a lot more about how the conga line is moving.”

Granick and his team tagged a few individual links in the molecular chain with a tiny fluorescent dye and monitored how those moved as the filament slithered along. In the conga line analogy, this approach would be like giving neon shirts to a few people at various points in the line, turning on black lights, and tracking the neon-clad dancers’ motion to map out the conga line’s path around the floor.

“What we found is that, as the filaments slither, sometimes they’re more free and sometimes they’re more tightly tangled up with each other,” Granick said. “Just like in a crowded place, you can only move through the empty spaces.”

Next, the team will focus on further improving their model to include a molecule’s forward motion as well as its lateral wiggling. “So far we’ve been able to see the conga line bending, moving sideways, and now we want to see it move in the direction it’s pointing,” Granick said. “That’s the missing link in completing this picture, which will lead to improved understanding of mechanical properties for all the situations where these filaments appear.”

The U.S. Department of Energy-funded team also included graduate students Bo Wang (lead author), Juan Guan and Stephen Anthony, research scientist Sung Chul Bae and materials science and engineering professor Kenneth Schweizer.

Liz Ahlberg | University of Illinois
Further information:

Further reports about: Conga Polymere actin filaments cellular process

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>