Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Polymer Chains Dance the Conga

16.03.2010
Understanding the steps to the intricate dance inside a cell is essential to one day choreographing the show. By studying the molecules that give a cell its structure, University of Illinois researchers are moving closer to understanding one of those steps: the conga line.

Led by Steve Granick, Founder Professor of Engineering and professor of materials science and engineering, of chemistry, of chemical and biomolecular engineering, and of physics at the U. of I., the team will publish its findings in the journal Physical Review Letters.

Long chains of the molecule actin form filaments that are a key component of the matrix that give cells structure. They play a role in numerous cellular processes, including signaling and transport. Similar polymers are used in applications from tires to contact lenses to the gels used for DNA and protein analyses.

Long actin filaments display snakelike movement, but their serpentine wriggling is limited by crowding from other filaments in the matrix. Researchers have long assumed that actin filaments could move anywhere within a confined cylinder of space, like a snake slithering through a pipe.

However, Granick and his research group have created a new model showing that the filaments’ track isn’t a perfect cylinder after all. Rather than a snake in a pipe, a filament moves more like a conga line on a crowded dance floor: Sometimes it’s a tight squeeze.

To track the filaments’ motion, the Illinois team used a novel approach. In the past researchers have observed the entire large molecule, which was like trying to figure out a conga line’s trajectory by watching the entire crowd writhing on the dance floor.

“But,” Granick said, “if I’m able to follow just one person in the crowd, I know a lot more about how the conga line is moving.”

Granick and his team tagged a few individual links in the molecular chain with a tiny fluorescent dye and monitored how those moved as the filament slithered along. In the conga line analogy, this approach would be like giving neon shirts to a few people at various points in the line, turning on black lights, and tracking the neon-clad dancers’ motion to map out the conga line’s path around the floor.

“What we found is that, as the filaments slither, sometimes they’re more free and sometimes they’re more tightly tangled up with each other,” Granick said. “Just like in a crowded place, you can only move through the empty spaces.”

Next, the team will focus on further improving their model to include a molecule’s forward motion as well as its lateral wiggling. “So far we’ve been able to see the conga line bending, moving sideways, and now we want to see it move in the direction it’s pointing,” Granick said. “That’s the missing link in completing this picture, which will lead to improved understanding of mechanical properties for all the situations where these filaments appear.”

The U.S. Department of Energy-funded team also included graduate students Bo Wang (lead author), Juan Guan and Stephen Anthony, research scientist Sung Chul Bae and materials science and engineering professor Kenneth Schweizer.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Conga Polymere actin filaments cellular process

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>