Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light Flight With Laser Light


More than 50 percent weight savings in aircraft construction is now possible using hypermodern production techniques. A process called 3-D laser sintering of the raw material permits a completely new kind of fabrication. This process can reduce aircraft component part counts and improve designs, leading to enormous savings in weight and volume.

The only equipment for this process in Austria - and at its time the second in the world - is located at FOTEC in Wiener Neustadt. The research subsidiary of the University of Applied Sciences located there is presently optimising the monitoring and quality control of the production process, while manufacturing a fuel collector for an aircraft engine that is even around 75 percent lighter than before.

In aeronautical engineering, every kilogram counts. Reducing weight saves kerosene and makes a fleet operator more competitive. However, safety requirements and construction-related restraints place limits in the quest to drop weight. These restrictions are set to be eased now by a completely innovative kind of 3-D manufacturing process: metal laser sintering.


The method is still so new that there are only a few professional production machines worldwide. One of them is located at FOTEC Forschungs- und Technologietransfer GmbH in Wiener Neustadt. Using this machine, a laser-sintered prototype fuel collector has now been fabricated for Austrian aircraft manufacturer Diamond Aircraft Industries GmbH. Dr. Gerhard Pramhas, Managing Director of FOTEC, on the impressive results of the titanium alloy work piece: "Using laser sintering, we were able to reduce the number of components from five down to one. Along with that went a weight reduction of 77 percent as well. This was made possible through the unique manufacturing technique."

The raw material for laser sintering is a metallic powder. This is mechanically built up layer-by-layer to a powder base. After applying each layer, the powder is melted by a laser at specified locations. Subsequently, an additional layer of powder is applied and melted again at the pre-calculated locations. In this way, even the most complex components can be manufactured as one piece, one layer at a time. Basically, this is what is known as a rapid prototyping process, carried out in this case with metal using a laser. The responsible department head, Dr. Rolf Seemann, explains: "We are speaking of additive manufacturing in this case. It is common to create components from an amorphous raw material by accumulation. The innovative leap is the capability of processing metal. So instead of plaster or plastic prototype models, fully functional individual parts can be produced - such as a fuel collector - thanks to this material."

Until now, the part had consisted of five individual pieces produced on a lathe that subsequently were customarily welded together. The pieces are partly hollow to facilitate fuel flow. And in addition, one of the components is threaded, which requires a separate step during production. With laser sintering of metal, the entire fuel collector with galleys and threads is able to be fabricated in one step. The production accuracies are in the range of hundreds of a millimetre and, in addition to the weight, the volume of the fuel collector could be reduced by almost 60 percent.


Dr. Seemann´s team actually succeeded in manufacturing an exact geometrical and functional replica of the original fuel collector. "But replication is actually only something compulsory," explains Dr. Pramhas. "The real leap is creating completely new construction designs for work pieces that utilise all of the advantages of 3-D laser sintering. Because this opens up options that can never even be realised for metallic work pieces using traditional manufacturing methods such as milling, turning and drilling. A simple example of this is a drill hole that previously could only run straight, but can now be led around a corner with any arc you want."

Although the facility at FOTEC is actually suited to industrial fabrication, the present focus of activity is directed elsewhere, as Dr. Pramhas explains: "The quality of the process strongly depends upon the optimal laser melting process. To control this, we would like to develop an optical technique that operates during the production process. In the next stage of development, optical monitoring will provide direct information to an adaptive control process so that the quality of the work pieces remains just as high for larger production runs." Although metal sintering with lasers is more suited for production of single pieces, production can easily be increased to several hundred per year. Certainly a sufficient number for aircraft constructions, in which laser sintering of metal could play a greater role in the future.

A video about 3-D laser sintering at FOTEC can be viewed here (in German only):

Contact FOTEC:
Prof.(FH) DI Dr. Gerhard Pramhas, MBA
Managing Director
FOTEC Forschungs- und Technologietransfer GmbH Viktor
Kaplan-Straße 2
2700 Wiener Neustadt, Austria
T +43 / (0) 2622 / 90333-0
Copy Editing and Distribution:
PR&D - Public Relations for Research & Development
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0) 1 / 505 70 44

Dr. Josef Handzel | PR&D
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>