Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese paper art inspires new 3-D fabrication method

09.09.2015

Strategic 'Kirigami cuts' in advanced materials result in strength, not failure

A cut or tear in a material is typically a sign of weakness. Now, a Northwestern University, University of Illinois and Tsinghua University research team has created complex 3-D micro- and nanostructures out of silicon and other materials found in advanced technologies using a new assembly method that uses cuts to advantage.


A new assembly method based on an ancient Japanese paper art quickly transforms 2-D structures into complex 3-D shapes. The results, reported by a Northwestern University and University of Illinois research team, could be useful in tissue engineering and microelectromechanical systems.

Credit: University of Illinois

The Kirigami method builds on the team's "pop-up" fabrication technique -- going from a 2-D material to 3-D in an instant, like a pop-up children's book -- reported earlier this year in the journal Science. While an innovative first step, those earlier ribbon-like structures yielded open networks, with limited ability to achieve closed-form shapes or to support spatially extended devices.

In their new work, the research team solved this problem by borrowing ideas from Kirigami, the ancient Japanese technique for forming paper structures by folding and cutting. The Kirigami study was published today (Sept. 8) by the Proceedings of the National Academy of Sciences (PNAS).

Starting with 2-D structures formed using state-of-the-art methods in semiconductor manufacturing and carefully placed "Kirigami cuts," the researchers created more than 50 different mostly closed 3-D structures that, in theory, could contain cells or support advanced electronic or optoelectronic devices. Such capabilities position the technique for potential use in tissue engineering and industrial applications, such as biomedical devices, energy storage and microelectromechanical systems.

"The key concept in Kirigami is a cut," said Yonggang Huang, the Walter P. Murphy Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern's McCormick School of Engineering.

"Cuts usually lead to failure, but here we have the opposite: cuts allow us to produce complex 3-D shapes we wouldn't have otherwise," he said. "This unique 3-D fabrication technique now can be used by others for their own creations and applications."

Huang and his team worked with the research group of John A. Rogers, the Swanlund Chair and professor of materials science and engineering at the University of Illinois. Rogers and Huang are co-corresponding authors of the study.

"Our approach offers remarkable flexibility in transforming 2-D structures, including those found in the most advanced forms of electronics and photonics, into 3-D structures," said Rogers, a longtime collaborator of Huang's. "We have successfully established a set of design rules and methods for manipulating sheets, ribbons and plates and controlling their behavior in 3-D space."

The research team made 3-D structures from materials including silicon, polymers, metals and dielectrics. Some structures combined a number of materials, such as gold and a semiconductor, including patterns that provide useful optical responses.

The Kirigami technique is suitable for mass production, and the breadth of materials that can be manipulated illustrates its usefulness over 3-D printing, which is generally only applied with polymers. The Kirigami method also is fast, while 3-D printing is slow.

The researchers started with a flat material adhered at certain places to a stretched substrate. They strategically made "cuts" in the material so that when the stretch is released and the surface "pops up" into three-dimensions, all the physical strain from the new 3-D shape is released through the cuts, keeping the structure from breaking. The cuts are made in just those places where strain normally would be concentrated.

The "cuts" are not made physically in the material, Huang explained. Instead, methods based on manufacturing approaches for computer chips allow these features to be defined in the material with extremely high engineering control.

The sizes of the 3-D structures range from 100 nanometers square to 3 centimeters square while the cuts themselves are truly tiny: typically between 1 micron and 10 microns wide for silicon 3-D structures -- plenty small enough to interface directly with cells or intracellular structures or to manipulate components in microelectronics.

The researchers successfully predicted by computer simulation the 2-D shape and cuts needed to produce the actual 3-D structure. The ability to make predictions eliminates the time and expense of trial-and-error experiments.

The researchers also can reversibly tune the optical properties of their structures by mechanical stretching, after they are formed. They demonstrated a simple optical shutter based on arrays of rotating microplates, operating much like shutters on a window.

###

The title of the paper is "A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes."

The co-first authors are Yihui Zhang, of Tsinghua University, Beijing, and Zheng Yan, of the University of Illinois at Urbana-Champaign.

Megan Fellman | EurekAlert!

Further reports about: 2-D structures 3-D 3-D structures fabrication material semiconductor structures

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>