Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interface Surprises May Motivate Novel Oxide Electronic Devices

24.09.2014

Complex oxides have long tantalized the materials science community for their promise in next-generation energy and information technologies.

Complex oxide crystals combine oxygen atoms with assorted metals to produce unusual and very desirable properties. Because their electrons interact strongly with their environments, complex oxides are versatile, existing as insulators, metals, magnets, and superconductors. They can tightly couple diverse physical properties, such as stress and strain, magnetism and magnetic order, electric field and polarization.


Collaborators from Korea, Norway, Ukraine and the United States analyzed atomic-scale polarization behavior and chemical composition for a ferroelectric (BFO) film on a metal (LSMO) to reveal electrically driven chemical changes that may someday be manipulated in novel oxide electronic devices. Image credit: Y.-M. Kim et al., Nature Mater. (2014), http://dx.doi.org/10.1038/nmat4058

“In highly correlated electron systems, physical properties are interconnected like a tangle of strings,” said Albina Borisevich of the Department of Energy’s Oak Ridge National Laboratory. “You don’t always know what will happen when you pull on one string. Often one string takes others with it.”

Borisevich led a project that made a surprising discovery—that intrinsic electric fields can drive oxygen diffusion at interfaces in engineered thin films made of complex oxides. The study is published in the September issue of Nature Materials.

Increased understanding of the properties of complex oxides will improve the ability to predict and control materials for new energy technologies. Researchers can custom-build complex oxides to pull on specific strings by changing an oxide’s chemical composition or layering it with metals or insulators. These novel materials may exhibit magnetic, electrical and mechanical properties, alone or in combination, that enable feats not possible today, such as electric-field-based data storage that is more energy-efficient than today’s magnetic memory or more efficient fuel cells that alter the concentration of charged atoms, or ions, at sites of key chemical reactions.

“Add more metal types and you’ve added more functionality. But you’ve also added more complexity,” Borisevich said. “At the interface between two materials, complexity goes through the roof.”

Collaborating to conquer complexity
The surprising discovery that intrinsic electric fields can drive oxygen diffusion at interfaces of complex oxides may serve as a basis for design of new electronic devices utilizing both electrons and ions.

The researchers, from Korea, Norway, Ukraine and the United States, observed the effect in ferroelectrics, materials that exhibit switchable electrical polarization, or asymmetric distribution of positive and negative electrical charges. Ferroelectrics usually have regions, or domains, that can be as small as several nanometers, with different directions of polarization. Their properties are used in some memory devices, where domains with positive and negative polarization serve as “bits” that encode information. However, the longevity of these devices and the power required to “write” information is determined by what is happening at interfaces between the positively or negatively polarized ferroelectric domains and their metallic substrates.

The researchers examined metal–ferroelectric interfaces for positively and negatively polarized domains. Their major finding was that, depending on the charge, either purely electrical or combined electrical and chemical phenomena were at play.

When a ferroelectric is joined with another material, polarization causes charges to accumulate at the interface. This excess charge is called “polarization charge.” The collaborators found that the interface of the ferroelectric material behaved differently depending on the sign of the polarization charge (positive or negative).

At the interface with positive polarization charge, negatively charged electrons were syphoned in from the metal to attenuate it. Surprisingly, for negative polarization charge, the opposite did not happen—that is, electrons were not pushed out of the interface region. Instead, negatively charged oxygen ions left, creating defects called oxygen vacancies.

“With the change of polarization charge, not only the sign but the physical nature of the compensating chemical species changes,” said Borisevich, who works in ORNL’s Materials Science and Technology Division. “Charge compensation by oxygen vacancies highlights the important role of ionic phenomena in oxide electronics and opens a pathway for new device concepts.” For example, someday engineers may design devices in which ions manipulate electrical response or vice versa.

Two compensatory mechanisms
On a substrate of strontium titanate (SrTiO3), the researchers layered a metallic oxide called lanthanum strontium manganite, or (La0.67Sr0.33)MnO3 (LSMO), an electrical contact providing a reservoir of electrons. Atop the metal layers they added layers of an insulator, a ferroelectric material called bismuth ferrite, or BiFeO3 (BFO).

To explore electronic and chemical effects induced by ferroelectric polarization at the interface of the metal and the insulator, the researchers coupled two techniques. First, aberration-corrected scanning transmission electron microscopy (STEM) mapped, at the atomic level, polarization changes throughout the ferroelectric material and its interface with the metal. It demonstrated structural distortions at the interface between the ferroelectric material and the metal on the side of the material with negative polarization charge but not on the side with positive charge.

Second, electron energy-loss spectroscopy (EELS), which provides chemical information, indicated sites of oxygen-atom depletion and oxidation-state changes of iron and manganese metals. This tool allowed the researchers to track the decrease in oxygen concentration occurring at the interface with negative polarization charge. It also demonstrated that the valence state, which gives an atom power to combine with other atoms, was different in the metal manganese at the two different interfaces. The experimental observations coupled with theoretical results built a strong case for oxygen vacancy compensation of charge for the side of the material with negative polarization and electronic compensation for the positive side.

The exact nature of the compensating species at ferroelectric interfaces can have a significant effect on switching behavior because not only electrons but also ions need to move at the interface when the polarization charge is switched. The study therefore suggests a promising role for electrochemical phenomena at oxide interfaces, opening possibilities for fine-tuning switching by engineering local oxygen concentration.

Said Borisevich, “In the future, we want to move beyond tracking different aspects of interface properties at the atomic scale and toward coming up with a desired static and/or dynamic behavior and then making it happen at the intersection of electronic and chemical/electrochemical phenomena characteristic of these systems.”

The title of the study is “Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1–xMnO3 interface.” Young-Min Kim of the Korea Basic Science Institute did imaging and spectroscopy at ORNL, conducting STEM/EELS study and data analysis; Anna Morozovska and Eugene Eliseev of the National Academy of Sciences of Ukraine did device-level modeling, Mark Oxley of Vanderbilt University did EELS profile simulations; Rohan Mishra of Vanderbilt University, who is a visiting scientist at ORNL, and S. T. Pantelides, who holds joint appointments at Vanderbilt and ORNL, conducted first principles calculations; Sverre Selbach and Tor Grande of the Norwegian University of Science and Technology provided solid-state chemistry reasoning; and Sergei Kalinin of ORNL and the Center for Nanophase Materials Sciences and Albina Borisevich of ORNL conceived and directed the project.

DOE’s Office of Science, the National Science Foundation and the State Fund of Fundamental Research of Ukraine sponsored the research. The work was conducted in part at the Center for Nanophase Materials Sciences and the National Energy Research Scientific Computing Center, DOE Office of Science User Facilities at ORNL and Lawrence Berkeley National Laboratory, respectively.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time.—by Dawn Levy

Dawn Levy | newswise

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>