Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared light visualizes nanoscale strain fields

12.01.2009
A joint team of researchers at CIC nanoGUNE (San Sebastian, Spain) and the Max Planck Institutes of Biochemistry and Plasma Physics (Munich, Germany) report the non-invasive and nanoscale resolved infrared mapping of strain fields in semiconductors.

The method, which is based on near-field microscopy, opens new avenues for analyzing mechanical properties of high-performance materials or for contact-free mapping of local conductivity in strain-engineered electronic devices (Nature Nanotechnology, advanced online publication, 11 Jan. 2009).


Infrared visualization of nanocrack evolution. a) Topography of triangular indents (depressions) at the surface of a SiC crystal. Indentation was performed by pressing a sharp diamond tip into the crystal surface. With increasing force F, the depression becomes larger and deeper. b) The infrared near-field images recorded at about 10 µm wavelength clearly show the regions around the indent where the crystal lattice is compressed (bright) or stretched (dark). Because of the exceptional high spatial resolution, the images reveal the onset and formation of nanoscale cracks (marked by dashed blue circlse) when the indentation force is increased. Copyright: Andreas Huber, Max Planck Institute of Biochemistry, Martinsried

Visualizing strain at length scales below 100 nm is a key requirement in modern metrology because strain determines the mechanical and electrical properties of high-performance ceramics or modern electronic devices, respectively. The non-invasive mapping of strain with nanoscale spatial resolution, however, is still a challenge.

A promising route for highly sensitive and non-invasive mapping of nanoscale material properties is scattering-type Scanning Near-field Optical Microscopy (s-SNOM). Part of the team had pioneered this technique over the last decade, enabling chemical recognition of nanostructures and mapping of local conductivity in industrial semiconductor nanodevices. The technique makes use of extreme light concentration at the sharp tip of an Atomic Force Microscope (AFM), yielding nanoscale resolved images at visible, infrared and terahertz frequencies. The s-SNOM thus breaks the diffraction barrier throughout the electromagnetic spectrum and with its 20 nm resolving power matches the needs of modern nanoscience and technology.

Now, the research team has provided first experimental evidence that the microscopy technique is capable of mapping local strain and cracks of nanoscale dimensions. This was demonstrated by pressing a sharp diamond tip into the surface of a Silicon Carbide crystal. With the near-field microscope the researchers were able to visualize the nanoscopic strain field around the depression and the generation of nanocracks (see Figure). "Compared to other methods such as electron microscopy, our technique offers the advantage of non-invasive imaging without the need of special sample preparation" says Andreas Huber who performed the experiments within his Ph.D. project. "Specific applications of technological interest could be the detection of nanocracks before they reach critical dimensions, e.g. in ceramics or Micro-Electro-Mechanical Systems (MEMS), and the study of crack propagation", says Alexander Ziegler.

The researchers also demonstrated that s-SNOM offers the intriguing possibility of mapping free-carrier properties such as density and mobility in strained silicon. By controlled straining of silicon, the properties of the free carriers can be designed, which is essential to further shrink and speed-up future computer chips. For both development and quality control, the quantitative and reliable mapping of the carrier mobility is strongly demanded but hitherto no tool has been available. "Our results thus promise interesting applications of s-SNOM in semiconductor science and technology such as the quantitative analysis of the local carrier properties in strain-engineered electronic nanodevices" says Rainer Hillenbrand, leader of the Nano-Photonics Group at MPI and the Nanooptics Laboratory at nanoGUNE.

Original publication:
A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, Infrared nanoscopy of strained semiconductors, Nat. Nanotech., advanced online publication, 11. Jan. 2009, DOI 10.1038/NNANO.2008.399.
Contact:
Dr. Rainer Hillenbrand
Nanooptics Laboratory
CIC nanoGUNE Consolider
20009 Donostia - San Sebastian, Spain
phone: +34 943 574 007
r.hillenbrand@nanogune.eu
and
Nano-Photonics Group
Max-Planck-Institut für Biochemie
82152 Martinsried, Germany

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/hillenbrand
http://www.nanogune.eu
http://www.biochem.mpg.de/en/news/pressroom/TeraHerzNanoletters_081008.pdf

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>