Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One of the most important problems in materials science solved

Together with three colleagues Professor Peter Oppeneer of Uppsala University has explained the hitherto unsolved mystery in materials science known as 'the hidden order' – how a new phase arises and why.

This discovery can be of great importance to our understanding of how new material properties occur, how they can be controlled and exploited in the future. The findings are now being published in the scientific journal Nature Materials and of great importance to future energy supply.

For a long time researchers have attempted to develop the superconducting materials of the future that will be able to conduct energy without energy losses, something of great importance to future energy supply. But one piece of the puzzle has been missing. There are several materials that evince a clear phase transition in all thermodynamic properties when the temperature falls below a certain transitional temperature, but no one has been able to explain the new collective order in the material. Until now, this has been called the hidden order.

"The hidden order was discovered 24 years ago, and for all these years scientists have tried to find an explanation, but so far no one has succeeded. This has made the question one of the hottest quests in materials science. And now that we can explain how the hidden order in materials occurs, in a manner that has never been seen before, we have solved one of the most important problems of our day in this scientific field," says Professor Peter Oppeneer.

Four physicists from Uppsala University, led by Peter Oppeneer and in collaboration with John Mydosh from the University of Cologne, who discovered the hidden order 24 years ago, show through large-scale calculations how the hidden order occurs. Extremely small magnetic fluctuations prompt changes in the macroscopic properties of the material, so an entirely new phase arises, with different properties.

"Never before have we seen the so-called 'magnetic spin excitations' produce a phase transition and the formation of a new phase. In ordinary materials such excitation cannot change the phase and properties of the material because it is too weak. But now we have shown that this is in fact possible," says Peter Oppeneer.

What explains in detail all of the physical phenomena in the hidden order is a computer-based theory. Among other applications, it can be used to better understand high-temperature superconducting materials and will thus be important in the development of new superconducting materials and our future energy supply.

Prof Peter Oppeneer | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>