Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance, organic nanowire phototransistors opens the way for optoelectronic device miniaturization

12.03.2013
A research team from Ulsan National Institute of Science and Technology (UNIST), South Korea have developed high-performance organic phototransistors (OPTs) based on single-crystalline n-channel organic nanowires. The research was published recently in Advanced Functional Materials.
Phototransistors are transistors in which the incident light intensity can modulate the charge-carrier density in the channel. Compared with conventional photodiodes, phototransistors enable easier control of light-detection sensitivity without problems such as the noise increment. However, to date, the research has mostly focused on thin-film OPTs, and nanoscale OPTs have scarcely been reported.

OPTs have many intrinsic advantages over their inorganic counterparts, such as the chemical tunability of optoelectronic properties by molecular design and high potential in low cost, light-weight, flexible applications.

Single-crystalline nano-/microwires (NWs/MWs) based on organic semiconductors have attracted great interest recently as they are promising building blocks for various electronic and optoelectronic applications. In particular, OPTs based on single-crystalline NWs/MWs may yield higher light sensitivity than their bulk counterparts. In addition, their one-dimensional, intrinsically defect-free and highly ordered nature will allow a deeper understanding of the fundamental mechanisms of charge generation and transport in OPTs, while enabling a bottom-up fabrication of optoelectronic nanodevices.

Prof. Joon Hak Oh and Hojeong Yu, working at UNIST, together with Prof. Zhenan Bao at Stanford University, USA, have worked on n-channel single-crystalline nanowire organic phototransistors (NW-OPTs) and observed significant enhancement in the charge-carrier mobility of NW-OPTs.

Prof. Oh said, ¡°The development of OPTs based on n-channel single-crystalline organic semiconducting NWs/MWs is highly desirable for the bottom-up fabrication of complementary metal oxide semiconductor (CMOS)-like photoelectronic circuits, which provides various advantages such as high operational stability, easy control of photoswitching voltages, high photosensitivity and responsivity.¡±

The photoelectronic characteristics of the single-crystalline NW-OPTs such as the photoresponsivity, the photo-switching ratio, and the photoconductive gain, were analyzed from the I-V characteristics coupled with light irradiation and compared with those of vacuum-deposited thin-film devices. The external quantum efficiencies (EQEs) were also investigated for the NW-OPTs and thin-film OPTs. In addition, they calculated the charge accumulation and release rates from deep traps, and investigated the effects of incident light intensity on their photoelectronic properties.

A mobility enhancement is observed when the incident optical power density increases and the wavelength of the light source matches the light-absorption range of the photoactive material. The photoswitching ratio is strongly dependent upon the incident optical power density, whereas the photoresponsivity is more dependent on matching the light-source wavelength with the maximum absorption range of the photoactive material.
NW-OPTs based on n-channel semiconductor, N,N ¡ä-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI), exhibited much higher external quantum efficiency (EQE) values (¡Ö7900 times larger) than thin-film OPTs, with a maximum EQE of 263 000%. This phenomena resulted from the intrinsically defect-free single-crystalline nature of the BPE-PTCDI NWs. In addition, an approach was devised to analyze the charge-transport behaviors using charge accumulation/release rates from deep traps under on/off switching of external light sources.

¡°Our approach to charge-accumulation/release-rate calculations could provide a fundamental understanding about charge-carrier-density variations under light irradiation, which subsequently enables in-depth study of OPTs,¡± said Prof. Oh, ¡°Hence organic single-crystalline NW-OPTs are a highly promising alternative to conventional thin-film-type photodiodes, and can effectively pave the way for optoelectronic device miniaturization.¡±

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science, and Technology (MEST), and the Global Frontier Research Center for Advanced Soft Electronics and published in Advanced Functional Materials (Title: High-Performance Phototransistors Based on Single-Crystalline n-Channel Organic Nanowires and Photogenerated Charge-Carrier Behaviors, 5 Feb 2013).

The article can be found at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201201848/abstract
Journal information
Advanced Functional Materials.
Funding information
National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science, and Technology (MEST)

UNIST-PR | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>