Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Material For Road Pavement: Low Energy, Warm Mix Asphalt With High Recycled Material Content

10.06.2014

The use of Reclaimed Asphalt Pavement (RAP),a recycled material obtained from deteriorated roads is a suitable way to conserve non-renewable resources that is aggregates and bitumen used for asphalt mixes. This invention received a Gold award in the Invention Innovation and Design Exposition 2014.

The scarcity of resources especially in the energy sector (eg. oil sector) and the shortage of new supplies of natural materials have affected the road building industry. There is a need for a reduction in temperature in the production of hot mix asphalt (HMA) to conserve energy and the need to conserve scarce resources such as virgin aggregates to produce HMA.

With the dwindling supply of new resources and spiraling cost of materials, the use of Reclaimed Asphalt Pavement (RAP),a recycled material obtained from deteriorated roads is a suitable way to conserve non-renewable resources that is aggregates and bitumen used for asphalt mixes. Most road authorities allow the incorporation of not more than 30% of RAP in hot mix asphalt to avoid any detrimental effects on the mix properties.

The increase in asphalt materials prices encouraged the road construction industry to strive for the use of higher percentages of RAP to reduce the cost of road projects. A higher addition of RAP should enhance the value of the recycled pavements and have the potential for reducing the quantity of waste materials. However, the use of RAP in HMA still requires mixing and compaction temperatures similar to the conventional HMA.

Recent advances in technology has allowed the temperature for mixing and compaction of asphaltic concrete mixes to be lowered compared to the mixing and compaction temperatures for conventional hot mix asphalt. Warm Mix Asphalt (WMA) allows a reduction in the mixing and compaction temperatures by using additives such as sasobit, which is a paraffin wax derived from coal gasification process.

The chemical composition of sasobit can be described as fine crystalline materials in long -chain hydrocarbons, composed from 40 to 115 carbon atoms. The melting point of sasobit is about 100 degree celcius and it is completely dissolved in bitumen at temperature above 115 degree Celsius. Mixing temperature for WMA is reduces to a range of about 115 to 135 degree Celsius, which is substantially lower than the mixing temperature of 150 to 160 degree Celsius used for conventional hot mix asphalt.

Therefore, there are enormous benefits of incorporating high percentages of RAP in WMA mixes, namely the reduction of energy to produce HMA and conservation of non-renewable resources (aggregates and bitumen) used for asphalt mixes.

This research investigated and compared the performance of WMA containing 30%, 40% and 50% of RAP by weight of the mix with the conventional asphaltic concrete. The performance of the mixes was compared by measuring the stiffness value, moisture susceptibility and rutting depth.

It was found that the warm mix asphalt using sasobit-additive and containing high percentage of RAP could produce mix with similar performance to the conventional HMA mix and complied to all Public Work Department of Malaysia's specification requirement. This shows that WMA added with up to 50% RAP has the potential to save production costs in terms of lower energy requirements and also savings in terms of raw materials used (due to high amount of recycled material added in the mix), without compromising the performance of the mix as it adheres to all requirements and specifications.

This study/invention received a Gold award in the Invention Innovation and Design Exposition 2014 UiTM Shah Alam.

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: Asphalt Energy Green Mix Pavement UiTM aggregates bitumen conventional degree hot mix asphalt materials mixing reduction temperature temperatures

More articles from Materials Sciences:

nachricht 3-D printing produces cartilage from strands of bioink
27.06.2016 | Penn State

nachricht Nanoscientists develop the 'ultimate discovery tool'
24.06.2016 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>