Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Material For Road Pavement: Low Energy, Warm Mix Asphalt With High Recycled Material Content

10.06.2014

The use of Reclaimed Asphalt Pavement (RAP),a recycled material obtained from deteriorated roads is a suitable way to conserve non-renewable resources that is aggregates and bitumen used for asphalt mixes. This invention received a Gold award in the Invention Innovation and Design Exposition 2014.

The scarcity of resources especially in the energy sector (eg. oil sector) and the shortage of new supplies of natural materials have affected the road building industry. There is a need for a reduction in temperature in the production of hot mix asphalt (HMA) to conserve energy and the need to conserve scarce resources such as virgin aggregates to produce HMA.

With the dwindling supply of new resources and spiraling cost of materials, the use of Reclaimed Asphalt Pavement (RAP),a recycled material obtained from deteriorated roads is a suitable way to conserve non-renewable resources that is aggregates and bitumen used for asphalt mixes. Most road authorities allow the incorporation of not more than 30% of RAP in hot mix asphalt to avoid any detrimental effects on the mix properties.

The increase in asphalt materials prices encouraged the road construction industry to strive for the use of higher percentages of RAP to reduce the cost of road projects. A higher addition of RAP should enhance the value of the recycled pavements and have the potential for reducing the quantity of waste materials. However, the use of RAP in HMA still requires mixing and compaction temperatures similar to the conventional HMA.

Recent advances in technology has allowed the temperature for mixing and compaction of asphaltic concrete mixes to be lowered compared to the mixing and compaction temperatures for conventional hot mix asphalt. Warm Mix Asphalt (WMA) allows a reduction in the mixing and compaction temperatures by using additives such as sasobit, which is a paraffin wax derived from coal gasification process.

The chemical composition of sasobit can be described as fine crystalline materials in long -chain hydrocarbons, composed from 40 to 115 carbon atoms. The melting point of sasobit is about 100 degree celcius and it is completely dissolved in bitumen at temperature above 115 degree Celsius. Mixing temperature for WMA is reduces to a range of about 115 to 135 degree Celsius, which is substantially lower than the mixing temperature of 150 to 160 degree Celsius used for conventional hot mix asphalt.

Therefore, there are enormous benefits of incorporating high percentages of RAP in WMA mixes, namely the reduction of energy to produce HMA and conservation of non-renewable resources (aggregates and bitumen) used for asphalt mixes.

This research investigated and compared the performance of WMA containing 30%, 40% and 50% of RAP by weight of the mix with the conventional asphaltic concrete. The performance of the mixes was compared by measuring the stiffness value, moisture susceptibility and rutting depth.

It was found that the warm mix asphalt using sasobit-additive and containing high percentage of RAP could produce mix with similar performance to the conventional HMA mix and complied to all Public Work Department of Malaysia's specification requirement. This shows that WMA added with up to 50% RAP has the potential to save production costs in terms of lower energy requirements and also savings in terms of raw materials used (due to high amount of recycled material added in the mix), without compromising the performance of the mix as it adheres to all requirements and specifications.

This study/invention received a Gold award in the Invention Innovation and Design Exposition 2014 UiTM Shah Alam.

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: Asphalt Energy Green Mix Pavement UiTM aggregates bitumen conventional degree hot mix asphalt materials mixing reduction temperature temperatures

More articles from Materials Sciences:

nachricht Personal cooling units on the horizon
29.04.2016 | Penn State

nachricht Exploring phosphorene, a promising new material
29.04.2016 | Rensselaer Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>