Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Material For Road Pavement: Low Energy, Warm Mix Asphalt With High Recycled Material Content

10.06.2014

The use of Reclaimed Asphalt Pavement (RAP),a recycled material obtained from deteriorated roads is a suitable way to conserve non-renewable resources that is aggregates and bitumen used for asphalt mixes. This invention received a Gold award in the Invention Innovation and Design Exposition 2014.

The scarcity of resources especially in the energy sector (eg. oil sector) and the shortage of new supplies of natural materials have affected the road building industry. There is a need for a reduction in temperature in the production of hot mix asphalt (HMA) to conserve energy and the need to conserve scarce resources such as virgin aggregates to produce HMA.

With the dwindling supply of new resources and spiraling cost of materials, the use of Reclaimed Asphalt Pavement (RAP),a recycled material obtained from deteriorated roads is a suitable way to conserve non-renewable resources that is aggregates and bitumen used for asphalt mixes. Most road authorities allow the incorporation of not more than 30% of RAP in hot mix asphalt to avoid any detrimental effects on the mix properties.

The increase in asphalt materials prices encouraged the road construction industry to strive for the use of higher percentages of RAP to reduce the cost of road projects. A higher addition of RAP should enhance the value of the recycled pavements and have the potential for reducing the quantity of waste materials. However, the use of RAP in HMA still requires mixing and compaction temperatures similar to the conventional HMA.

Recent advances in technology has allowed the temperature for mixing and compaction of asphaltic concrete mixes to be lowered compared to the mixing and compaction temperatures for conventional hot mix asphalt. Warm Mix Asphalt (WMA) allows a reduction in the mixing and compaction temperatures by using additives such as sasobit, which is a paraffin wax derived from coal gasification process.

The chemical composition of sasobit can be described as fine crystalline materials in long -chain hydrocarbons, composed from 40 to 115 carbon atoms. The melting point of sasobit is about 100 degree celcius and it is completely dissolved in bitumen at temperature above 115 degree Celsius. Mixing temperature for WMA is reduces to a range of about 115 to 135 degree Celsius, which is substantially lower than the mixing temperature of 150 to 160 degree Celsius used for conventional hot mix asphalt.

Therefore, there are enormous benefits of incorporating high percentages of RAP in WMA mixes, namely the reduction of energy to produce HMA and conservation of non-renewable resources (aggregates and bitumen) used for asphalt mixes.

This research investigated and compared the performance of WMA containing 30%, 40% and 50% of RAP by weight of the mix with the conventional asphaltic concrete. The performance of the mixes was compared by measuring the stiffness value, moisture susceptibility and rutting depth.

It was found that the warm mix asphalt using sasobit-additive and containing high percentage of RAP could produce mix with similar performance to the conventional HMA mix and complied to all Public Work Department of Malaysia's specification requirement. This shows that WMA added with up to 50% RAP has the potential to save production costs in terms of lower energy requirements and also savings in terms of raw materials used (due to high amount of recycled material added in the mix), without compromising the performance of the mix as it adheres to all requirements and specifications.

This study/invention received a Gold award in the Invention Innovation and Design Exposition 2014 UiTM Shah Alam.

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: Asphalt Energy Green Mix Pavement UiTM aggregates bitumen conventional degree hot mix asphalt materials mixing reduction temperature temperatures

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>