Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Shows Promise for Future IC Interconnects

08.06.2009
The unique properties of thin layers of graphite – known as graphene – make the material attractive for a wide range of potential electronic devices.

Researchers have now experimentally demonstrated the potential for another graphene application: replacing copper for interconnects in future generations of integrated circuits.

In a paper published in the June 2009 issue of the IEEE journal Electron Device Letters, researchers at the Georgia Institute of Technology report detailed analysis of resistivity in graphene nanoribbon interconnects as narrow as 18 nanometers.

The results suggest that graphene could out-perform copper for use as on-chip interconnects – tiny wires that are used to connect transistors and other devices on integrated circuits. Use of graphene for these interconnects could help extend the long run of performance improvements for silicon-based integrated circuit technology.

“As you make copper interconnects narrower and narrower, the resistivity increases as the true nanoscale properties of the material become apparent,” said Raghunath Murali, a research engineer in Georgia Tech’s Microelectronics Research Center. “Our experimental demonstration of graphene nanowire interconnects on the scale of 20 nanometers shows that their performance is comparable to even the most optimistic projections for copper interconnects at that scale. Under real-world conditions, our graphene interconnects probably already out-perform copper at this size scale.”

Beyond resistivity improvement, graphene interconnects would offer higher electron mobility, better thermal conductivity, higher mechanical strength and reduced capacitance coupling between adjacent wires.

“Resistivity is normally independent of the dimension – a property inherent to the material,” Murali noted. “But as you get into the nanometer-scale domain, the grain sizes of the copper become important and conductance is affected by scattering at the grain boundaries and at the side walls. These add up to increased resistivity, which nearly doubles as the interconnect sizes shrink to 30 nanometers.”

The research was supported by the Interconnect Focus Center, which is one of the Semiconductor Research Corporation/DARPA Focus Centers, and the Nanoelectronics Research Initiative through the INDEX Center.

Murali and collaborators Kevin Brenner, Yinxiao Yang, Thomas Beck and James Meindl studied the electrical properties of graphene layers that had been taken from a block of pure graphite. They believe the attractive properties will ultimately also be measured in graphene fabricated using other techniques, such as growth on silicon carbide, which now produces graphene of lower quality but has the potential for achieving higher quality.

Because graphene can be patterned using conventional microelectronics processes, the transition from copper could be made without integrating a new manufacturing technique into circuit fabrication.

“We are optimistic about being able to use graphene in manufactured systems because researchers can already grow layers of it in the lab,” Murali noted. “There will be challenges in integrating graphene with silicon, but those will be overcome. Except for using a different material, everything we would need to produce graphene interconnects is already well known and established.”

Experimentally, the researchers began with flakes of multi-layered graphene removed from a graphite block and placed onto an oxidized silicon substrate. They used electron beam lithography to construct four electrode contacts on the graphene, then used lithography to fabricate devices consisting of parallel nanoribbons of widths ranging between 18 and 52 nanometers. The three-dimensional resistivity of the nanoribbons on 18 different devices was then measured using standard analytical techniques at room temperature.

The best of the graphene nanoribbons showed conductivity equal to that predicted for copper interconnects of the same size. Because the comparisons were between non-optimized graphene and optimistic estimates for copper, they suggest that performance of the new material will ultimately surpass that of the traditional interconnect material, Murali said.

“Even graphene samples of moderate quality show excellent properties,” he explained. “We are not using very high levels of optimization or especially clean processes. With our straightforward processing, we are getting graphene interconnects that are essentially comparable to copper. If we do this more optimally, the performance should surpass copper.”

Though one of graphene’s key properties is reported to be ballistic transport – meaning electrons can flow through it without resistance – the material’s actual conductance is limited by factors that include scattering from impurities, line-edge roughness and from substrate phonons – vibrations in the substrate lattice.

Use of graphene interconnects could help facilitate continuing increases in integrated circuit performance once features sizes drop to approximately 20 nanometers, which could happen in the next five years, Murali said. At that scale, the increased resistance of copper interconnects could offset performance increases, meaning that without other improvements, higher density wouldn’t produce faster integrated circuits.

“This is not a roadblock to achieving scaling from one generation to the next, but it is a roadblock to achieving increased performance,” he said. “Dimensional scaling could continue, but because we would be giving up so much in terms of resistivity, we wouldn’t get a performance advantage from that. That’s the problem we hope to solve by switching to a different materials system for interconnects.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>