Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Shows Promise for Future IC Interconnects

08.06.2009
The unique properties of thin layers of graphite – known as graphene – make the material attractive for a wide range of potential electronic devices.

Researchers have now experimentally demonstrated the potential for another graphene application: replacing copper for interconnects in future generations of integrated circuits.

In a paper published in the June 2009 issue of the IEEE journal Electron Device Letters, researchers at the Georgia Institute of Technology report detailed analysis of resistivity in graphene nanoribbon interconnects as narrow as 18 nanometers.

The results suggest that graphene could out-perform copper for use as on-chip interconnects – tiny wires that are used to connect transistors and other devices on integrated circuits. Use of graphene for these interconnects could help extend the long run of performance improvements for silicon-based integrated circuit technology.

“As you make copper interconnects narrower and narrower, the resistivity increases as the true nanoscale properties of the material become apparent,” said Raghunath Murali, a research engineer in Georgia Tech’s Microelectronics Research Center. “Our experimental demonstration of graphene nanowire interconnects on the scale of 20 nanometers shows that their performance is comparable to even the most optimistic projections for copper interconnects at that scale. Under real-world conditions, our graphene interconnects probably already out-perform copper at this size scale.”

Beyond resistivity improvement, graphene interconnects would offer higher electron mobility, better thermal conductivity, higher mechanical strength and reduced capacitance coupling between adjacent wires.

“Resistivity is normally independent of the dimension – a property inherent to the material,” Murali noted. “But as you get into the nanometer-scale domain, the grain sizes of the copper become important and conductance is affected by scattering at the grain boundaries and at the side walls. These add up to increased resistivity, which nearly doubles as the interconnect sizes shrink to 30 nanometers.”

The research was supported by the Interconnect Focus Center, which is one of the Semiconductor Research Corporation/DARPA Focus Centers, and the Nanoelectronics Research Initiative through the INDEX Center.

Murali and collaborators Kevin Brenner, Yinxiao Yang, Thomas Beck and James Meindl studied the electrical properties of graphene layers that had been taken from a block of pure graphite. They believe the attractive properties will ultimately also be measured in graphene fabricated using other techniques, such as growth on silicon carbide, which now produces graphene of lower quality but has the potential for achieving higher quality.

Because graphene can be patterned using conventional microelectronics processes, the transition from copper could be made without integrating a new manufacturing technique into circuit fabrication.

“We are optimistic about being able to use graphene in manufactured systems because researchers can already grow layers of it in the lab,” Murali noted. “There will be challenges in integrating graphene with silicon, but those will be overcome. Except for using a different material, everything we would need to produce graphene interconnects is already well known and established.”

Experimentally, the researchers began with flakes of multi-layered graphene removed from a graphite block and placed onto an oxidized silicon substrate. They used electron beam lithography to construct four electrode contacts on the graphene, then used lithography to fabricate devices consisting of parallel nanoribbons of widths ranging between 18 and 52 nanometers. The three-dimensional resistivity of the nanoribbons on 18 different devices was then measured using standard analytical techniques at room temperature.

The best of the graphene nanoribbons showed conductivity equal to that predicted for copper interconnects of the same size. Because the comparisons were between non-optimized graphene and optimistic estimates for copper, they suggest that performance of the new material will ultimately surpass that of the traditional interconnect material, Murali said.

“Even graphene samples of moderate quality show excellent properties,” he explained. “We are not using very high levels of optimization or especially clean processes. With our straightforward processing, we are getting graphene interconnects that are essentially comparable to copper. If we do this more optimally, the performance should surpass copper.”

Though one of graphene’s key properties is reported to be ballistic transport – meaning electrons can flow through it without resistance – the material’s actual conductance is limited by factors that include scattering from impurities, line-edge roughness and from substrate phonons – vibrations in the substrate lattice.

Use of graphene interconnects could help facilitate continuing increases in integrated circuit performance once features sizes drop to approximately 20 nanometers, which could happen in the next five years, Murali said. At that scale, the increased resistance of copper interconnects could offset performance increases, meaning that without other improvements, higher density wouldn’t produce faster integrated circuits.

“This is not a roadblock to achieving scaling from one generation to the next, but it is a roadblock to achieving increased performance,” he said. “Dimensional scaling could continue, but because we would be giving up so much in terms of resistivity, we wouldn’t get a performance advantage from that. That’s the problem we hope to solve by switching to a different materials system for interconnects.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>