Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene meets heat waves

09.03.2015

In the race to miniaturize electronic components, researchers are challenged with a major problem: the smaller or the faster your device, the more challenging it is to cool it down. One solution to improve the cooling is to use materials with very high thermal conductivity, such as graphene, to quickly dissipate heat and thereby cool down the circuits.

At the moment, however, potential applications are facing a fundamental problem: how does heat propagate inside these sheets of materials that are no more than a few atoms thick?


Heat can propagate as a wave over very long distances in graphene and other 2-D materials.

Credit: EPFL/Andrea Cepellotti 2015

In a study published in Nature Communications, a team of EPFL researchers has shed new light on the mechanisms of thermal conductivity in graphene and other two-dimensional materials. They have demonstrated that heat propagates in the form of a wave, just like sound in air.

This was up to now a very obscure phenomenon observed in few cases at temperatures close to the absolute zero.Their simulations provide a valuable tool for researchers studying graphene, whether to cool down circuits at the nanoscale, or to replace silicon in tomorrow's electronics.

Quasi-Lossless Propagation

If it has been difficult so far to understand the propagation of heat in two-dimensional materials, it is because these sheets behave in unexpected ways compared to their three-dimensional cousins. In fact, they are capable of transferring heat with extremely limited losses, even at room temperature.

Generally, heat propagates in a material through the vibration of atoms. These vibrations are are called "phonons", and as heat propagates though a three-dimensional material,, these phonons keep colliding with each other, merging together, or splitting.

All these processes can limit the conductivity of heat along the way. Only under extreme conditions, when temperature goes close to the absolute zero (-200 0C or lower), it is possible to observe quasi-lossless heat transfer.

A wave of quantum heat

The situation is very different in two dimensional materials, as shown by researchers at EPFL. Their work demonstrates that heat can propagate without significant losses in 2D even at room temperature, thanks to the phenomenon of wave-like diffusion, called "second sound".

In that case, all phonons march together in unison over very long distances.

"Our simulations, based on first-principles physics, have shown that atomically thin sheets of materials behave, even at room temperature, in the same way as three-dimensional materials at extremely low temperatures" says Andrea Cepellotti, the first author of the study.

"We can show that the thermal transport is described by waves, not only in graphene but also in other materials that have not been studied yet," explains Cepellotti. "This is an extremely valuable information for engineers, who could exploit the design of future electronic components using some of these novel two-dimensional materials properties."

Andrea Cepellotti | EurekAlert!

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>