Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold squeezed into micro-Velcro

08.02.2013
Researchers at Ruhr University have used self-assembling techniques to produce gold microwires that have suitable properties for micro-Velcro. The research is published today in Science and Technology of Advanced Materials.
Velcro consists of one surface with loops, and another with hooks that latch onto the loops, joining opposing surfaces strongly. A miniaturised version of Velcro could be used in micro- and nanotechnology, but to form the surfaces, microwires are needed with properties that provide strength and durability.

Several different approaches have been used to construct ‘micro-Velcro’, but the most promising are those that use self-assembling or self-organising techniques, where microwires are ‘squeezed’ from a composite material by compression. Researchers at Ruhr University Bochum, Germany, have used this technique to produce gold microwires that have suitable properties for micro-Velcro.
The scientists created thin films of composite materials containing gold and tungsten metal. These were then heated to very high temperatures, causing the tungsten to react with oxygen and form tungsten oxide. This increased the volume of the tungsten and caused compression within the composite, ‘squeezing’ the softer gold out as ‘whiskers’.

Different ratios of gold to tungsten were tried in the original composite, and these were heated to different temperatures and for different times to find the optimal conditions. The best result produced gold microwires approximately 35 micrometres long – similar to the width of a human hair – and 2 micrometres in diameter.

The resulting gold microwires have larger diameters than indium metal microwires that had previously been made using a similar technique, making them more suitable for micro Velcro. The results demonstrate that this new approach is a feasible one for producing the microwires that could be used to make micro-Velcro.

This research was published in the journal, Science and Technology of Advanced Materials.

Media contact:
Mikiko Tanifuji
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494
Journal information
Sven Hamann et al 2013 Sci. Technol. Adv. Mater. 14 015003 doi:10.1088/1468-6996/14/1/015003

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>