Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Geometries: Researchers Create New Shapes of Artificial Microcompartments

13.12.2012
As in nature, various shapes could be more efficient for specific functions

In nature, biological functions are often carried out in tiny protective shells known as microcompartments, structures that provide home to enzymes that convert carbon dioxide into energy in plant cells and to viruses that replicate once they enter the cell.

Most of these shells buckle into an icosahedron shape, forming 20 sides that allow for high interface with their surroundings. But some shells — such as those found in the single-celled Archaea or simple, salt-loving organisms called halophiles —break into triangles, squares, or non-symmetrical geometries. While these alternate geometries may seem simple, they can be incredibly useful in biology, where low symmetry can translate to higher functionality.

Researchers at Northwestern University have recently developed a method to recreate these shapes in artificial microcompartments created in the lab: by altering the acidity of their surroundings. The findings could lead to designed microreactors that mimic the functions of these cell containers or deliver therapeutic materials to cells at specific targeted locations.
“If you want to design a very clever capsule, you don’t make a sphere. But perhaps you shouldn’t make an icosahedron, either,” said Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering, Chemistry, and (by courtesy) Chemical and Biological Engineering at Northwestern’s McCormick School of Engineering and one of the paper’s authors. “What we are beginning to realize is maybe these lower symmetries are smarter.”

To create the new shell geometries, the researchers co-assembled oppositely charged lipids with variable degrees of ionization and externally modified the surrounding electrolyte. The resulting geometries include fully faceted regular and irregular polyhedral, such as square and triangular shapes, and mixed Janus-like vesicles with faceted and curved domains that resembled cellular shapes and shapes of halophilic organisms.
The research was conducted by three McCormick faculty members: Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering, Professor of Chemistry, and (by courtesy) Chemical and Biological Engineering; Michael J. Bedzyk, professor of materials science and engineering and (by courtesy) physics and astronomy; and Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry, and Medicine.

A paper about the research, “Molecular Crystallization Controlled by pH Regulates Mesoscopic Membrane Morphology,” was published November 27 in the journal ACS Nano.

Other authors of the paper include lead co-authors Cheuk-Yui Leung, Liam C. Palmer, and Bao Fu Qiao; Sumit Kewalramani, Rastko Sknepnek, Christina J. Newcomb, and Megan A. Greenfield, all of Northwestern; and Graziano Vernizzi of Siena College.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>