Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Almost frictionless

11.11.2008
Lubricants in bearings and gear units ensure that not too much energy is lost through friction. Yet it still takes a certain percentage of the energy to compensate for friction losses. Lubricants made of liquid crystals could reduce friction to almost zero.

Passengers check in their suitcases, which are automatically transported away by conveyer belts; moving walkways and escalators run for hours without a break – thousands of gear units rattle away at the major airports. The power consumption is tremendous, in the range of several gigawatt hours per annum.

A substantial amount of this is lost through friction. In wind turbines and in cars, too, a percentage of the energy is spent on friction – reducing the efficiency factor accordingly. Novel lubricants that almost eliminate the effect of friction could be the answer. Once they have been set in motion, the bearings run and run and run.

But what makes the new lubricant different from the oils that were used to lubricate bearings until now? “This lubricant is made from liquid crystals like the ones we know from flat-screen monitors,” explains Dr. Andreas Kailer, head of department at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg. “In contrast to normal liquids, the molecules in liquid crystals have a certain orientation – you might compare them to matches with their heads all pointing in the same direction.”

In a joint project with the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam and the Mainz-based company Nematel, the IWM researchers are investigating which liquid crystals are most suitable for use as lubricants, and under what conditions. Their testing unit exerts a certain amount of force on a clamped metal cylinder that is moved back and forth over a supporting contact surface. With which lubricant does the machine require the smallest amount of energy to move the metal cylinder?

While the friction hardly changes when using conventional oil, it drops to almost zero after a while when liquid crystals are used. The time that this takes depends primarily on the pressure with which the moving cylinder is pressed against the contact surface. If you were to compare it to a toboggan, it would correspond to the weight of the child sitting on it. “Liquid crystals have not been suitable as a lubricant for ball bearings until now, as the contact pressure is too high – the friction does not drop far enough.

“For slide bearings, on the other hand, liquid crystals are the perfect solution,” says Kailer. Since liquid crystals have been produced mainly for monitors up to now, they have to be ultra-pure – which makes them very expensive. So the researchers now plan to simplify the synthesis process, since less pure substances are also suitable as lubricants,. “We hope to be able to market a liquid crystal lubricant in three to five years’ time,” says Kailer.

Dr. rer. nat. Andreas Kailer | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2008/rn11fo6g.jsp
http://www.fraunhofer.de/EN/press/pi/2008/11/ResearchNews112008Topic6.jsp

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>