Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New filtration material could make petroleum refining cheaper, more efficient

24.05.2013
A newly synthesized material might provide a dramatically improved method for separating the highest-octane components of gasoline. Measurements at the National Institute of Standards and Technology (NIST) have clarified* why. The research team, which included scientists from NIST and several other universities, has published its findings in the journal Science.*

Created in the laboratory of Jeffrey Long, professor of chemistry at the University of California, Berkeley, the material is a metal-organic framework, or MOF, which can be imagined as a sponge with microscopic holes.


This view of the molecular structure of the MOF shows the triangular channels that run through the material. The walls of these channels trap the lower-octane components of gas while allowing the higher-octane molecules to pass through, potentially providing a more efficient and cost effective way to refine high-octane gasoline.

Credit: Science/AAAS [Higher resolution versions available from scipak@aaas.org.]

The innumerable interior walls of the MOF form triangular channels that selectively trap only the lower-octane components based on their shape, separating them easily from the higher-octane molecules in a way that could prove far less expensive than the industry's current method. The Long laboratory and UC Berkeley have applied for a patent on the MOF, which is known by its chemical formula, Fe2(bdp)3.

High-octane gasolines, the ultra or premium blends at fueling stations, are more expensive than regular unleaded gasoline due to the difficulty of separating out the right type of molecules from petroleum. Petroleum includes several slightly different versions of the same molecule that have identical molecular formulae but varying shapes—called isomers. Creating premium fuel requires a refinery to boil the mixture at precise temperatures to separate the isomers with the most chemical energy. The trouble is, four of these isomers—two of which are high octane, the other two far lower—have only slightly different boiling points, making the overall process both challenging and costly.

The new MOF, however, could allow refineries to sidestep this problem by essentially trapping the lowest-octane isomers while letting the others pass through. The lowest-octane isomers are more linear and can nestle closer to the MOF walls, so when a mixture of isomers passes through the MOF, the less desired isomers stick to its surface—somewhat akin to the way a wet piece of paper sticks.

Matthew Hudson and his colleagues at the NIST Center for Neutron Research (NCNR) used neutron powder diffraction, a technique for determining molecular structure, to explore why the MOF has the right shape to selectively separate the isomers. Their research was essential to validate the team's model of how the MOF adsorbs the low-octane isomers.

"It's easier to separate the isomers with higher octane ratings this way rather than with the standard method, making it more efficient," says Hudson, a postdoctoral fellow at the NCNR. "And based on the lower temperatures needed, it's also far less energy-intensive, meaning it should be less expensive." Hudson says that while industrial scientists will need to work out how to apply the discovery in refineries, the new MOF appears to be robust enough in harsh conditions to be used repeatedly a great many times, potentially reducing the necessary investment by a petroleum company.

* Z.R. Herm, B.M. Wiers, J.A. Mason, J.M. van Baten, M.R. Hudson, P. Zajdel, C.M. Brown, N. Masciocchi, R. Krishna and J.R. Long. Separation of hexane isomers in a metal-organic framework with triangular channels. Science, May 24, 2013. DOI: 10.1126/science.12334071

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>