Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced properties for polymer-based conveyor belts used in materials handling

10.12.2008
Cooperation between DuPont Engineering Polymers and TU Chemnitz

DuPont Engineering Polymers and the materials handling department of the Technical University of Chemnitz have agreed a three-year joint development program which will commence in October 2008.


Photo: DuPont
The new team seeking enhanced performance for conveyor belts based on high-performance polymers from DuPont: (left to right) Daniel Ayglon (DuPont), Dr. Andreas K. Müller (DuPont), Prof. Dr. Klaus Nendel (TU Chemnitz), Ernst A. Poppe (DuPont), Dr. Jens Sumpf (TU Chemnitz), Karsten Faust (DuPont), Frank Rasch (TU Chemnitz).

Its objective is to develop three-dimensionally flexible conveyor belts, made using high performance polymers from DuPont, with significant improvements in terms of stability and stiffness, as well as enhanced tribological properties. These conveyor belts should provide end-use benefits such as the ability to handle greater loads at faster speeds, increased energy efficiency and improved operating characteristics.

Conveyor units with components made from DuPont™ Delrin®, for example, are already in use across the beverage and electrical industries. Due to their low-wear/low-friction behaviour, parts made of Delrin®, such as chain links and fasteners, require little or no lubrication. Moreover, they consume less energy, operate more quietly and for longer than their metal counterparts.

The materials handling department at the TU Chemnitz specialises in research into the areas of tribological pairing of traction mechanisms and guidance systems, as well as new concepts for technical logistics. This work is carried out by Professor Dr-Ing. Klaus Nendel, and his team, at a technical school comprising 1000 m² of testing and laboratory space. Using specially-developed test rigs, wear and friction measurements can be taken to establish a correlation between test specimen behaviour and virtually lifelike conditions on the test rig.

“The industrial adoption of such high-performance conveyor belts requires the geometric adaptation of the belt’s design as well as a new material system, optimised in terms of its mechanical and tribological properties,” said Professor Dr-Ing. Klaus Nendel, TU Chemnitz. “We are pleased to welcome DuPont as our industrial partner, who will be able support our research with its comprehensive range of high performance polymers.”

“The joint project with TU Chemnitz provides a platform for the exchange of expertise between research, design developers and our product developers, which in turn will allow us to develop new materials tailored to current requirements, and to create new markets and applications for conveyor belt manufacturers,” added Dr.-Ing. Andreas K. Müller, responsible for college programs at DuPont Engineering Polymers in Germany.

The DuPont Oval, DuPont™, The miracles of science™, and Delrin® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>