Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced properties for polymer-based conveyor belts used in materials handling

10.12.2008
Cooperation between DuPont Engineering Polymers and TU Chemnitz

DuPont Engineering Polymers and the materials handling department of the Technical University of Chemnitz have agreed a three-year joint development program which will commence in October 2008.


Photo: DuPont
The new team seeking enhanced performance for conveyor belts based on high-performance polymers from DuPont: (left to right) Daniel Ayglon (DuPont), Dr. Andreas K. Müller (DuPont), Prof. Dr. Klaus Nendel (TU Chemnitz), Ernst A. Poppe (DuPont), Dr. Jens Sumpf (TU Chemnitz), Karsten Faust (DuPont), Frank Rasch (TU Chemnitz).

Its objective is to develop three-dimensionally flexible conveyor belts, made using high performance polymers from DuPont, with significant improvements in terms of stability and stiffness, as well as enhanced tribological properties. These conveyor belts should provide end-use benefits such as the ability to handle greater loads at faster speeds, increased energy efficiency and improved operating characteristics.

Conveyor units with components made from DuPont™ Delrin®, for example, are already in use across the beverage and electrical industries. Due to their low-wear/low-friction behaviour, parts made of Delrin®, such as chain links and fasteners, require little or no lubrication. Moreover, they consume less energy, operate more quietly and for longer than their metal counterparts.

The materials handling department at the TU Chemnitz specialises in research into the areas of tribological pairing of traction mechanisms and guidance systems, as well as new concepts for technical logistics. This work is carried out by Professor Dr-Ing. Klaus Nendel, and his team, at a technical school comprising 1000 m² of testing and laboratory space. Using specially-developed test rigs, wear and friction measurements can be taken to establish a correlation between test specimen behaviour and virtually lifelike conditions on the test rig.

“The industrial adoption of such high-performance conveyor belts requires the geometric adaptation of the belt’s design as well as a new material system, optimised in terms of its mechanical and tribological properties,” said Professor Dr-Ing. Klaus Nendel, TU Chemnitz. “We are pleased to welcome DuPont as our industrial partner, who will be able support our research with its comprehensive range of high performance polymers.”

“The joint project with TU Chemnitz provides a platform for the exchange of expertise between research, design developers and our product developers, which in turn will allow us to develop new materials tailored to current requirements, and to create new markets and applications for conveyor belt manufacturers,” added Dr.-Ing. Andreas K. Müller, responsible for college programs at DuPont Engineering Polymers in Germany.

The DuPont Oval, DuPont™, The miracles of science™, and Delrin® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>