Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The end of the road for pathogens

Scientists prove benefit of textiles with antiviral and antibacterial effect

As part of an AiF research project (AiF no. N 17407), scientists from the Hohenstein Institute in Bönnigheim (Germany) have, for the first time, developed a textile finishing with both an antiviral and an antibacterial function. This technology can be used for products in nurseries, child day care centres and hospitals to interrupt chains of infection.

Colour differences in cleaning cloths made of microfibres before and after finishing with copper pigments. ©Hohenstein Institute

Laboratory test under realistic conditions with cleaning cloths for the inactivation of viruses, bacteria and moulds on surfaces. ©Hohenstein Institute

Most infection-induced respiratory problems are caused by viruses. For example, the respiratory syncytial virus, a pathogen belonging to the family of paramyxoviruses, can cause infections of the upper respiratory tract in the form of colds, coughs, acute bronchitis or even pneumonia, particularly in small children.

At the start of winter, the rate of infections in child day care centres and nurseries regularly increases. Diarrhoea caused by noroviruses and rotaviruses as well as bacterial infections of the respiratory tract and the alimentary tract, on the other hand, are "in season" all year round.

To avoid droplet and smear infections as far as possible, hygienic hands, textiles and surfaces are of paramount importance.

The essential factor in avoiding or limiting the spread of disease in childcare facilities is regular and thorough hand-washing, by children and their carers.

However, textiles can also play a part in spreading pathogens. Viruses do not have their own metabolism and can therefore only survive for a limited time outside a host, and unlike bacteria, do not multiply there.

However, as studies have impressively documented, textiles that are in regular contact with hands have been proven to contribute to the spread of viruses (Sauver et al., 1998). In a scientific examination, clothes as well as domestic and hospital textiles in the form of bed linen, towels, kitchen towels and so on are, alongside hands, an important potential transmission route for viruses.

Surfaces of all kinds, which can also be contaminated by viruses and bacteria via the hands or air, are the third key transmission route for viruses. One important element in preventing infection is therefore the cleaning of surfaces. The Hohenstein scientists are investigating these factors in their current research project.

The test design included cleaning cloths in which, for the first time, antiviral and antibacterial effectiveness were combined with each other in one functional textile finishing. "Over the long term, we are interested in finding out whether the risk of infection, that is to say the spread of germs from person to person, can be reduced by using biofunctional textiles in the future," says Prof. Höfer, head of the hygiene, environment and medicine department.

To achieve this goal, various organic and inorganic colloidal or nanoparticle copper compounds and copper complexes were first applied in a sol-gel process. The effectiveness of the textile microfibre substrate was optimised using various application techniques such as foulard or spray methods. The inactivation of the test viruses was significant, was retained over 15 washing cycles and was at the same time abrasion-resistant.

A second alternative antiviral finish of microfibre cloths was achieved by finishing with copper pigments in a high-temperature exhaust process. In a similar way to dying with dispersion dyes, the dispersed copper pigments were incorporated in the fibres in a slightly acid environment. In a second step, fixing was carried out using a polymer binding agent in a cold padding process to protect the copper particles against mechanical abrasion. These copper finishes also produced good evenness, but there was a slight green tone compared to the originally lighter fabric colour. All samples passed the laboratory tests on skin-friendliness.

The effectiveness tests under realistic conditions were carried out on different surfaces, such as glass, stainless steel or wood, which were contaminated with viruses and wiped with the finished cleaning cloths. The bacterial virus MS2, a non-pathogenic surrogate virus, which due to its structure and environmental stability is comparable to clinically relevant viruses such as novovirus, poliovirus, hepatitis A or enteroviruses, was used as the test virus. The finished microfibre cloths absorbed 91 % of the applied viruses. At the same time, the virus concentration in the cloth was reduced by approximately 90 %. Effectiveness tests against bacteria and mould were also carried out in accordance with standards (DIN EN ISO 20743 and EN 14119). With this test set-up, the finishes were optimised in a targeted manner.

The research project reveals that antiviral cleaning cloths provide an efficient hygienic effect and can help to reduce the germ transfer rate e.g. of pathogens in nurseries and child day care centres. However, this new functionalisation could be of interest in the domestic environment, in hospitals, old people's homes, care homes and in communal facilities (e.g. canteens) and in protective clothing for the fire brigade, emergency services and military.

Rose-Marie Riedl | idw
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>