Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The end of the road for pathogens

14.01.2014
Scientists prove benefit of textiles with antiviral and antibacterial effect

As part of an AiF research project (AiF no. N 17407), scientists from the Hohenstein Institute in Bönnigheim (Germany) have, for the first time, developed a textile finishing with both an antiviral and an antibacterial function. This technology can be used for products in nurseries, child day care centres and hospitals to interrupt chains of infection.


Colour differences in cleaning cloths made of microfibres before and after finishing with copper pigments. ©Hohenstein Institute


Laboratory test under realistic conditions with cleaning cloths for the inactivation of viruses, bacteria and moulds on surfaces. ©Hohenstein Institute

Most infection-induced respiratory problems are caused by viruses. For example, the respiratory syncytial virus, a pathogen belonging to the family of paramyxoviruses, can cause infections of the upper respiratory tract in the form of colds, coughs, acute bronchitis or even pneumonia, particularly in small children.

At the start of winter, the rate of infections in child day care centres and nurseries regularly increases. Diarrhoea caused by noroviruses and rotaviruses as well as bacterial infections of the respiratory tract and the alimentary tract, on the other hand, are "in season" all year round.

To avoid droplet and smear infections as far as possible, hygienic hands, textiles and surfaces are of paramount importance.

The essential factor in avoiding or limiting the spread of disease in childcare facilities is regular and thorough hand-washing, by children and their carers.

However, textiles can also play a part in spreading pathogens. Viruses do not have their own metabolism and can therefore only survive for a limited time outside a host, and unlike bacteria, do not multiply there.

However, as studies have impressively documented, textiles that are in regular contact with hands have been proven to contribute to the spread of viruses (Sauver et al., 1998). In a scientific examination, clothes as well as domestic and hospital textiles in the form of bed linen, towels, kitchen towels and so on are, alongside hands, an important potential transmission route for viruses.

Surfaces of all kinds, which can also be contaminated by viruses and bacteria via the hands or air, are the third key transmission route for viruses. One important element in preventing infection is therefore the cleaning of surfaces. The Hohenstein scientists are investigating these factors in their current research project.

The test design included cleaning cloths in which, for the first time, antiviral and antibacterial effectiveness were combined with each other in one functional textile finishing. "Over the long term, we are interested in finding out whether the risk of infection, that is to say the spread of germs from person to person, can be reduced by using biofunctional textiles in the future," says Prof. Höfer, head of the hygiene, environment and medicine department.

To achieve this goal, various organic and inorganic colloidal or nanoparticle copper compounds and copper complexes were first applied in a sol-gel process. The effectiveness of the textile microfibre substrate was optimised using various application techniques such as foulard or spray methods. The inactivation of the test viruses was significant, was retained over 15 washing cycles and was at the same time abrasion-resistant.

A second alternative antiviral finish of microfibre cloths was achieved by finishing with copper pigments in a high-temperature exhaust process. In a similar way to dying with dispersion dyes, the dispersed copper pigments were incorporated in the fibres in a slightly acid environment. In a second step, fixing was carried out using a polymer binding agent in a cold padding process to protect the copper particles against mechanical abrasion. These copper finishes also produced good evenness, but there was a slight green tone compared to the originally lighter fabric colour. All samples passed the laboratory tests on skin-friendliness.

The effectiveness tests under realistic conditions were carried out on different surfaces, such as glass, stainless steel or wood, which were contaminated with viruses and wiped with the finished cleaning cloths. The bacterial virus MS2, a non-pathogenic surrogate virus, which due to its structure and environmental stability is comparable to clinically relevant viruses such as novovirus, poliovirus, hepatitis A or enteroviruses, was used as the test virus. The finished microfibre cloths absorbed 91 % of the applied viruses. At the same time, the virus concentration in the cloth was reduced by approximately 90 %. Effectiveness tests against bacteria and mould were also carried out in accordance with standards (DIN EN ISO 20743 and EN 14119). With this test set-up, the finishes were optimised in a targeted manner.

The research project reveals that antiviral cleaning cloths provide an efficient hygienic effect and can help to reduce the germ transfer rate e.g. of pathogens in nurseries and child day care centres. However, this new functionalisation could be of interest in the domestic environment, in hospitals, old people's homes, care homes and in communal facilities (e.g. canteens) and in protective clothing for the fire brigade, emergency services and military.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>