Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electronics: Graphene sheets’ growing attractions

A theoretical and numerical study of graphene sheets reveals a property that may lead to novel opto-electric devices and circuits

One-atom-thick sheets of carbon — known as graphene — have a range of electronic properties that scientists are investigating for potential use in novel devices.

Plasmon energy states in an array of four graphene sheets. Each plane represents different plasmon energy states resulting from different numbers of electrons in each sheet.

Copyright : 2012 A*STAR Institute of Materials Research and Engineering

Graphene’s optical properties are also garnering attention, which may increase further as a result of research from the A*STAR Institute of Materials Research and Engineering (IMRE). Bing Wang of the IMRE and his co-workers have demonstrated that the interactions of single graphene sheets in certain arrays allow efficient control of light at the nanoscale1.

Light squeezed between single graphene sheets can propagate more efficiently than along a single sheet. Wang notes this could have important applications in optical-nanofocusing and in superlens imaging of nanoscale objects.
In conventional optical instruments, light can be controlled only by structures that are about the same scale as its wavelength, which for optical light is much greater than the thickness of graphene. By utilizing surface plasmons, which are collective movements of electrons at the surface of electrical conductors such as graphene, scientists can focus light to the size of only a few nanometers.

Wang and his co-workers calculated the theoretical propagation of surface plasmons in structures consisting of single-atomic sheets of graphene, separated by an insulating material. For small separations of around 20 nanometers, they found that the surface plasmons in the graphene sheets interacted such that they became ‘coupled’ (see image). This theoretical coupling was very strong, unlike that found in other materials, and greatly influenced the propagation of light between the graphene sheets.

The researchers found, for instance, that optical losses were reduced, so light could propagate for longer distances. In addition, under a particular incoming angle for the light, the study predicted that the refraction of the incoming beam would go in the direction opposite to what is normally observed. Such an unusual negative refraction can lead to remarkable effects such as superlensing, which allows imaging with almost limitless resolution.

As graphene is a semiconductor and not a metal, it offers many more possibilities than most other plasmonic devices, comments the IMRE’s Jing Hua Teng, who led the research. “These graphene sheet arrays may lead to dynamically controllable devices, thanks to the easier tuning of graphene’s properties through external stimuli such as electrical voltages.” Graphene also allows for an efficient coupling of the plasmons to other objects nearby, such as molecules that are adsorbed on its surface. Teng therefore says that the next step is to further explore the interesting physics in graphene array structures and look into their immediate applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Wang, B., Zhang, X., García-Vidal, F. J., Yuan, X. & Teng, J. Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Physical Review Letters 109, 073901 (2012).

A*STAR Research | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>