Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DuPont™ Crastin® PBT grades cut costs with super-fast moulding cycles

09.01.2009
Moulders can cut cycle time for PBT parts up to 30 percent with new super-fast grades of DuPont™ Crastin® PBT thermoplastic polyester. Designated Crastin® SF, the new resins come in non-reinforced form and in reinforced versions with 15 or 30 percent glass fibre.

“The shorter moulding cycles achieved with Crastin® SF can deliver cost savings ranging up to 20 percent,” said Dave Donofrio, global business manager for Crastin® at DuPont Engineering Polymers. “The super-fast moulding resins are particularly advantageous in moulding thin-wall parts such as connectors and large parts such as structural housings.”


Photo: DuPont
In this example comparing glass-reinforced grades, use of DuPont™ Crastin® SF enables a 30 percent drop in cycle time.

The key to the cycle time reductions provided by the new resins is their exceptionally high flow. For example, the melt viscosity of a 30 percent glass Crastin® SF grade is 43 percent lower than that of a comparable standard grade at 250°C and a typical moulding process shear rate of 1000 s-1.

The high flow of Crastin® SF grades opens the way for major reductions in melt temperature, thus saving precious seconds in the duration of hold pressure and cooling. The chart above shows a typical example.

In addition to reducing cycle time, the enhanced flow of Crastin® SF resins can also enable the design and production of parts with thinner walls. For large parts, this can lead to substantial savings in material consumption and part weight. In the case of small parts, it can permit new part designs with longer, more intricate flow paths. The higher flow of Crastin® SF resins also opens the way to cost savings through the use of moulds with more cavities. Alternatively, because Crastin® SF requires lower injection pressure, the moulder can employ a smaller machine, which costs less to buy and to operate.

The mechanical properties of the new resins are very similar to those of comparable standard grades, according to Donofrio. “We achieve that impressive result with new technology that enhances the flow of polymer chains at the molecular level while maintaining the properties expected for comparable PBT resins,” he said.

For more information about DuPont™ Crastin® SF super-fast moulding resins, please visit plastics.dupont.com.

The DuPont Engineering Polymers business manufactures and sells Crastin® PBT and Rynite® PET thermoplastic polyester resins, Delrin® acetal resins, Hytrel® thermoplastic polyester elastomers, DuPont™ ETPV engineering thermoplastic vulcanizates, Minlon® mineral-reinforced nylon resins, Thermx® PCT polycyclohexylene dimethylterephthalates, Tynex® nylon filaments, Vespel® parts and shapes, Zenite® liquid crystal polymers and Zytel® nylon resins and Zytel® HTN high-performance polyamides. These products serve global markets in the aerospace, appliance, automotive, consumer, electrical, electronic, healthcare, industrial, sporting goods and many other diversified industries.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval, DuPont™, The miracles of science™, and Crastin® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>