Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of material with amazing properties

Normally a material can be either magnetically or electrically polarized, but not both.

Now researchers at the Niels Bohr Institute at the University of Copenhagen have studied a material that is simultaneously magnetically and electrically polarizable. This opens up new possibilities, for example, for sensors in technology of the future. The results have been published in the scientific journal, Nature Materials.

The "8-armed candlestick" in this unusual image of the measurements is proof that the "walls" of the domains in TbFeO3 repel each other at certain temperatures and therefore lie at a fixed distance from each other. The signal from the "ordinary" chaotic domain walls would more resemble a fly swatter. Credit: Niels Bohr Institute

Materials that can be both magnetically and electrically polarized and also have additional properties are called multiferroics and were previously discovered by Russian researchers in the 1960s. But the technology to examine the materials did not exist at that time. It is only now, in recent years, that researchers have once again focused on analyzing the properties of such materials. Now you have research facilities that can analyze the materials down to the atomic level.

Surprising test results

"We have studied the rare, naturally occurring iron compound, TbFeO3, using powerful neutron radiation in a magnetic field. The temperature was cooled down to near absolute zero, minus 271 C. We were able to identify that the atoms in the material are arranged in a congruent lattice structure consisting of rows of the heavy metal terbium separated by iron and oxygen atoms. Such lattices are well known, but their magnetic domains are new. Normally, the magnetic domains lie a bit helter-skelter, but here we observed that they lay straight as an arrow with the same distance between them. We were completely stunned when we saw it," explains Kim Lefmann, Associate Professor at the Nano-Science Center, University of Copenhagen.

They were very strange and very beautiful measurements and it is just such a discovery that can awaken the researchers' intense interest. Why does it look like this?

Explaining physics

The experiments were conducted at the neutron research facility Helmholtz-Zentrum in Berlin in collaboration with researchers in Holland, Germany, at ESS in Lund and at Risø/DTU. They would like to get a general understanding of the material and with the help of calculations; and have now arrived at a more precise image of the relationship between the structure of the material and its physical properties.

"What the models are describing is that the terbium walls interact by exchanging waves of spin (magnetism), which is transferred through the magnetic iron lattice. The result is a Yukawa-like force, which is known from nuclear and particle physics. The material exhibits in a sense the same interacting forces that hold the particles together in atomic nuclei," explains Heloisa Bordallo, Associate Professor at the Niels Bohr Institute.

It is precisely this interaction between the transition metal, iron, and the rare element, terbium, that plays an important role in this magneto-electrical material. The terbium's waves of spin cause a significant increase in the electric polarization and the interaction between the ions of the elements creates one of the strongest magneto-electrical effects observed in materials.

"Through these results we found a new pathway to discover and develop new multiferroics", emphasize the researchers in the group. Now it is up to further research to determine whether this new effect could lead to new applications of these materials with the amazing physical properties.


Kim Lefmann, Associate Professor, Nanophysics, Niels Bohr Institute, University of Copenhagen +45 3532 0476, +45 2925 0476,

Heloisa Bordallo, Associate Professor, Nanophysics, Niels Bohr Institute, University of Copenhagen, +45 3532 0425, +45 213 088 29,

Gertie Skaarup | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>