Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Novel Conduction Control Technique for Graphene

19.11.2012
Researchers have developed a novel technique for controlling the electrical conductivity of graphene.
Researchers at the Nanoelectronics Research Institute of the National Institute of Advanced Industrial Science and Technology (AIST), in joint work with a NIMS team headed by Dr. Kazuhito Tsukagoshi, a MANA Principal Investigator at the NIMS International Center for Materials Nanoarchitectonics, developed a novel technique for controlling the electrical conductivity of graphene.

A team headed by Dr. Shu Nakaharai, a Designated Intensive Researcher at the Collaboration Research Team Green Nanoelectronics Center (hereinafter, GNC; Leader: Naoki Yokoyama), Nanoelectronics Research Institute (Director: Seigo Kanemaru), National Institute of Advanced Industrial Science and Technology (hereinafter, AIST; President: Tamotsu Nomakuchi), and Dr. Shinichi Ogawa, an Invited Researcher at the Nanoelectronics Research Institute, AIST Innovation Center for Advanced Nanodevices (Director: Hiroyuki Akinaga), in joint research with a team headed by Dr. Kazuhito Tsukagoshi, a MANA Principal Investigator at the International Center for Materials Nanoarchitectonics (hereinafter, WPI-MANA; Director-General: Masakazu Aono), National Institute for Materials Science (hereinafter, NIMS; President: Sukekatsu Ushioda), developed a novel technique for controlling the electrical conductivity of graphene.

In the technique developed in this research, a helium ion beam is irradiated on graphene using a helium ion microscope to artificially introduce a low concentration of crystal defects, and it becomes possible to modulate the movement of electrons and holes in the graphene by applying a voltage to the gate electrode. Although this phenomenon of conduction control by introduction of crystal defects had been predicted theoretically, there were no examples in which on/off operation at room temperature was achieved experimentally. It is possible to introduce the technique developed in this work in the existing framework of production technology, including large area wafers.

For more details, please contact

Dr. Naoki Yokoyama
Leader-Collaborative Research Team,
Green Nanoelectronics Center,
Nanoelectronics Research Institute
TELF+81-29-849-1607
FAXF+81-29-849-1186
E-Mail: yokoyama.naoki@aist.go.jp

Dr. Shintaro Sato
TELF+81-29-849-1485
FAXF+81-29-849-1186
E-Mail: shintaro.sato@aist.go.jp

Dr. Kazuhito Tsukagoshi
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4894
E-Mail:TSUKAGOSHI.Kazuhito@nims.go.jp

For general inquiry

AIST Public Relations Department
TEL: +81-29-862-6216
FAX: +81-29-862-6212
E-Mail: press-ml@aist.go.jp

NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail: pr@nims.go.jp
Associated links
http://www.nims.go.jp/eng/news/press/2012/09/p201209250.html
Meeting information
Details of this technology were presented at the 2012 International Conference on Solid State Devices and Materials (SSDM2012) held in Kyoto, Japan September 25-27, 2012.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/09/p201209250.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>