Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Novel Conduction Control Technique for Graphene

19.11.2012
Researchers have developed a novel technique for controlling the electrical conductivity of graphene.
Researchers at the Nanoelectronics Research Institute of the National Institute of Advanced Industrial Science and Technology (AIST), in joint work with a NIMS team headed by Dr. Kazuhito Tsukagoshi, a MANA Principal Investigator at the NIMS International Center for Materials Nanoarchitectonics, developed a novel technique for controlling the electrical conductivity of graphene.

A team headed by Dr. Shu Nakaharai, a Designated Intensive Researcher at the Collaboration Research Team Green Nanoelectronics Center (hereinafter, GNC; Leader: Naoki Yokoyama), Nanoelectronics Research Institute (Director: Seigo Kanemaru), National Institute of Advanced Industrial Science and Technology (hereinafter, AIST; President: Tamotsu Nomakuchi), and Dr. Shinichi Ogawa, an Invited Researcher at the Nanoelectronics Research Institute, AIST Innovation Center for Advanced Nanodevices (Director: Hiroyuki Akinaga), in joint research with a team headed by Dr. Kazuhito Tsukagoshi, a MANA Principal Investigator at the International Center for Materials Nanoarchitectonics (hereinafter, WPI-MANA; Director-General: Masakazu Aono), National Institute for Materials Science (hereinafter, NIMS; President: Sukekatsu Ushioda), developed a novel technique for controlling the electrical conductivity of graphene.

In the technique developed in this research, a helium ion beam is irradiated on graphene using a helium ion microscope to artificially introduce a low concentration of crystal defects, and it becomes possible to modulate the movement of electrons and holes in the graphene by applying a voltage to the gate electrode. Although this phenomenon of conduction control by introduction of crystal defects had been predicted theoretically, there were no examples in which on/off operation at room temperature was achieved experimentally. It is possible to introduce the technique developed in this work in the existing framework of production technology, including large area wafers.

For more details, please contact

Dr. Naoki Yokoyama
Leader-Collaborative Research Team,
Green Nanoelectronics Center,
Nanoelectronics Research Institute
TELF+81-29-849-1607
FAXF+81-29-849-1186
E-Mail: yokoyama.naoki@aist.go.jp

Dr. Shintaro Sato
TELF+81-29-849-1485
FAXF+81-29-849-1186
E-Mail: shintaro.sato@aist.go.jp

Dr. Kazuhito Tsukagoshi
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4894
E-Mail:TSUKAGOSHI.Kazuhito@nims.go.jp

For general inquiry

AIST Public Relations Department
TEL: +81-29-862-6216
FAX: +81-29-862-6212
E-Mail: press-ml@aist.go.jp

NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail: pr@nims.go.jp
Associated links
http://www.nims.go.jp/eng/news/press/2012/09/p201209250.html
Meeting information
Details of this technology were presented at the 2012 International Conference on Solid State Devices and Materials (SSDM2012) held in Kyoto, Japan September 25-27, 2012.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/09/p201209250.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>