Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallizing the Future of Oxide Materials

26.01.2012
A University of Arkansas physicist and his colleagues have examined the challenges facing scientists building the next generation of materials and innovative electronic devices and identified opportunities for taking the rational material design in new directions.

Jak Chakhalian of the University of Arkansas, A.J. Millis of Columbia University and J. Rondinelli of Drexel University present their ideas in the current issue of Nature.

“Where you see issues, there are opportunities,” Chakhalian said.

The researchers focus on complex oxide interfaces with strongly correlated electrons, which are artificially created structures involving materials called transition metal oxides. Oxide interfaces have the potential to revolutionize materials and devices based on them the way that semiconductors once did, but researchers find themselves hampered by several obstacles.

First, no one has developed a comprehensive theory of why oxide interfaces behave as they do, which means that scientists cannot predict or often even explain the materials’ properties. Second, scientists face challenges in synthesizing these complex materials with atomic precision. Synthesizing involves taking several chemical elements balanced very precisely and combining them into intricate geometrical arrangements. On top of this, to create interfaces, scientists must grow these very dissimilar materials together.

While these challenges may seem intimidating, Chakhalian and his colleagues see two opportunities. The first is to grow materials in unusual directions. Chakhalian has already demonstrated that an oxide interface grown along the diagonal of a cube will crystalize into triangular and hexagonal atomic patterns, while the same material grown on a conventional “horizontal” surface will have a common cubic pattern.

“When grown along the diagonal, from the mechanical, electronic and magnetic properties point of view it becomes a new, exotic material,” he said. By forcing materials to grow in directions that they would usually resist in nature, Chakhalian suggests a way to find these novel exotic materials.

The second opportunity involves creating interfaces between oxide materials and materials where oxygen is replaced by another element, which leads to entirely new materials with novel electronic properties. For instance, nickel oxide is an insulator but nickel sulfide is metallic. By alternating an oxide-based layer with a non-oxide based layer, scientists propose creating interfaces with important properties for, among other things, energy savings and water purification.

“If you want to talk about the next nanoelectronics revolution or real solutions to the energy problem, these are some of the groundbreaking directions we propose to take,” Chakhalian said.

Chakhalian is the Charles and Clydene Scharlau Professor of Physics in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>