Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallizing the Future of Oxide Materials

26.01.2012
A University of Arkansas physicist and his colleagues have examined the challenges facing scientists building the next generation of materials and innovative electronic devices and identified opportunities for taking the rational material design in new directions.

Jak Chakhalian of the University of Arkansas, A.J. Millis of Columbia University and J. Rondinelli of Drexel University present their ideas in the current issue of Nature.

“Where you see issues, there are opportunities,” Chakhalian said.

The researchers focus on complex oxide interfaces with strongly correlated electrons, which are artificially created structures involving materials called transition metal oxides. Oxide interfaces have the potential to revolutionize materials and devices based on them the way that semiconductors once did, but researchers find themselves hampered by several obstacles.

First, no one has developed a comprehensive theory of why oxide interfaces behave as they do, which means that scientists cannot predict or often even explain the materials’ properties. Second, scientists face challenges in synthesizing these complex materials with atomic precision. Synthesizing involves taking several chemical elements balanced very precisely and combining them into intricate geometrical arrangements. On top of this, to create interfaces, scientists must grow these very dissimilar materials together.

While these challenges may seem intimidating, Chakhalian and his colleagues see two opportunities. The first is to grow materials in unusual directions. Chakhalian has already demonstrated that an oxide interface grown along the diagonal of a cube will crystalize into triangular and hexagonal atomic patterns, while the same material grown on a conventional “horizontal” surface will have a common cubic pattern.

“When grown along the diagonal, from the mechanical, electronic and magnetic properties point of view it becomes a new, exotic material,” he said. By forcing materials to grow in directions that they would usually resist in nature, Chakhalian suggests a way to find these novel exotic materials.

The second opportunity involves creating interfaces between oxide materials and materials where oxygen is replaced by another element, which leads to entirely new materials with novel electronic properties. For instance, nickel oxide is an insulator but nickel sulfide is metallic. By alternating an oxide-based layer with a non-oxide based layer, scientists propose creating interfaces with important properties for, among other things, energy savings and water purification.

“If you want to talk about the next nanoelectronics revolution or real solutions to the energy problem, these are some of the groundbreaking directions we propose to take,” Chakhalian said.

Chakhalian is the Charles and Clydene Scharlau Professor of Physics in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>