Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracked metal, heal thyself

10.10.2013
Unexpected result shows that in some cases, pulling apart makes cracks in metal fuse together.

It was a result so unexpected that MIT researchers initially thought it must be a mistake: Under certain conditions, putting a cracked piece of metal under tension — that is, exerting a force that would be expected to pull it apart — has the reverse effect, causing the crack to close and its edges to fuse together.


A computer simulation of the molecular stucture of a metal alloy, showing the boundaries between microcystalline grains (white lines forming hexagons), shows a small crack (dark horizontal bar just right of bottom center) that mends itself as the metal is put under stress. This simulation was one of several the MIT researchers used to uncover this new self-healing phenomenon. Simulation courtesy of Guoqiang Xu and Michael Demkowicz

The surprising finding could lead to self-healing materials that repair incipient damage before it has a chance to spread. The results were published in the journal Physical Review Letters in a paper by graduate student Guoqiang Xu and professor of materials science and engineering Michael Demkowicz.

“We had to go back and check,” Demkowicz says, when “instead of extending, [the crack] was closing up. First, we figured out that, indeed, nothing was wrong. The next question was: ‘Why is this happening?’”

The answer turned out to lie in how grain boundaries interact with cracks in the crystalline microstructure of a metal — in this case nickel, which is the basis for “superalloys” used in extreme environments, such as in deep-sea oil wells.

By creating a computer model of that microstructure and studying its response to various conditions, “We found that there is a mechanism that can, in principle, close cracks under any applied stress,” Demkowicz says.

Most metals are made of tiny crystalline grains whose sizes and orientations can affect strength and other characteristics. But under certain conditions, Demkowicz and Xu found, stress “causes the microstructure to change: It can make grain boundaries migrate. This grain boundary migration is the key to healing the crack,” Demkowicz says.

The very idea that crystal grain boundaries could migrate within a solid metal has been extensively studied within the last decade, Demkowicz says. Self-healing, however, occurs only across a certain kind of boundary, he explains — one that extends partway into a grain, but not all the way through it. This creates a type of defect is known as a “disclination.”

Disclinations were first noticed a century ago, but had been considered “just a curiosity,” Demkowicz says. When he and Xu found the crack-healing behavior, he says, “it took us a while to convince ourselves that what we’re seeing are actually disclinations.”

These defects have intense stress fields, which “can be so strong, they actually reverse what an applied load would do,” Demkowicz says: In other words, when the two sides of a cracked material are pulled apart, instead of cracking further, it can heal. “The stress from the disclinations is leading to this unexpected behavior,” he says.

Having discovered this mechanism, the researchers plan to study how to design metal alloys so cracks would close and heal under loads typical of particular applications. Techniques for controlling the microstructure of alloys already exist, Demkowicz says, so it’s just a matter of figuring out how to achieve a desired result.

“That’s a field we’re just opening up,” he says. “How do you design a microstructure to self-heal? This is very new.”

The technique might also apply to other kinds of failure mechanisms that affect metals, such as plastic flow instability — akin to stretching a piece of taffy until it breaks. Engineering metals’ microstructure to generate disclinations could slow the progression of this type of failure, Demkowicz says.

Such failures can be “life-limiting situations for a lot of materials,” Demkowicz says, including materials used in aircraft, oil wells, and other critical industrial applications. Metal fatigue, for example — which can result from an accumulation of nanoscale cracks over time — “is probably the most common failure mode” for structural metals in general, he says.

“If you can figure out how to prevent those nanocracks, or heal them once they form, or prevent them from propagating,” Demkowicz says, “this would be the kind of thing you would use to improve the lifetime or safety of a component.”

The work was funded by the BP-MIT Materials and Corrosion Center.

Written by: David L. Chandler, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>