Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-effective production of infrared lenses

01.08.2012
If visibility is poor, thermal cameras can warn drivers of people or animals on the road. Yet such devices have been very expensive – until now. An important step has been taken to manufacture them more cheaply. A new process will make the infrared lenses – a component of such cameras – up to 70 percent cheaper.

Rain pelts down on the roof of the car; it is difficult to make out anything in the pitch dark. Suddenly, a deer runs out of the forest and onto the road, but the driver cannot respond in time.


Above: Thermal image, taken with pressed lenses in a test camera. Below: Pressed lenses made ofchalcogenide glass.
© Fraunhofer IWM

When it comes to such dangerous situations, micro-bolometers constitute one way of “extending” the human eye and defusing such dangerous situations. They detect infrared rays – in other words, the heat emitted by a living creature – and in case of danger, warn the driver through an acoustic signal or a warning light. At about 2,000 euros, these devices are still quite expensive and are only being used in luxury-class vehicles.

Production costs drop by over 70 percent

Part for part, these devices should be getting more affordable. Researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg are working on the infrared lenses that are in the cameras. “We have developed a production process for lenses that enables us to lower the costs of these components by more than 70 percent. Thus the prize for the micro-bolometer could be reduced,” says Dr. Helen Müller, scientist at IWM. Normally, the lenses are made out of crystalline materials like germanium, zinc selenide or zinc sulfide.

The problem is that these materials are very expensive and can only be processed mechanically – it takes grinding, polishing or diamond turning to shape them into the correctly. Obviously this involves high processing costs. “Instead of crystalline materials, we use the amorphous chalcogenide glass. Its softening temperature – that is, the temperature at which it can be formed – is low. Therefore, we can form it using non-isothermic hot stamping,” says Müller.

This process is similar to making waffles on a waffle iron. The researchers place the chalcogenide glass between two pressing tools which determine the form of the required lenses. Then, it is heated and formed between both pressing tools – the “waffle iron” is clamped together. After a few minutes, the glass is cooled again to below the softening temperature and removed. And thus, the lens is already perfect. In contrast to conventionally processed optics, it no longer has to be further refined.

The lenses manufactured this way exhibit the same excellent optical imaging quality as those that are polished. To ensure that no glass remains attached to the tools, their surface is coated with anti-adhesive, non-stick coatings, similar to the Teflon coating on a waffle iron. The scientists now want to further refine the process towards cost-effective mass production.

The applications for micro-bolometers – and thus for cost-effective lenses – are not limited to the automotive sector. Imagine, for example, these devices assisting older people in their homes, If the senior were to fall, the bolometer registers this event and sends an alarm to relatives or neighbors through an optical or acoustic signal. In production halls, bolometers can oversee and monitor the production processes of various products, to ensure the necessary temperatures are maintained and warn employees who are spending time in danger zones. In residential buildings, the devices could detect energy leaks, such as through unsealed windows or poorly insulated walls.

Dr. Helen Müller | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/cost-effective-production-of-infrared-lenses.html

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>