Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel coatings show great promise as flame retardants in polyurethane foam

04.08.2011
Gram for gram, novel carbon nanofiber-filled coatings devised by researchers from the National Institute of Standards and Technology (NIST) and Texas A&M University outperformed conventional flame retardants used in the polyurethane foam of upholstered furniture and mattresses by at least 160 percent and perhaps by as much as 1,130 percent.

The impressive test results, reported in the journal Polymer,* suggest that significant fire-safety advantages can be gained by coating polyurethane foam (PUF) with a club-sandwich-like arrangement of thin layers containing carbon nanofibers and polymers. The upshot, says NIST researcher Rick Davis, is that the experimental coating seems to create the equivalent of a "fire-resistant armor" on the porous foam.

Ignition of soft furnishings account for about 5 percent of residential fires, and the consequences are disproportionately high. These fires are responsible for a third of fire-caused deaths of civilians and 11 percent of property losses due to fires in homes.

The flammability of mattresses is regulated by federal law. A complementary rule to regulate the flammability of upholstered furniture has been proposed recently.

Several organizations, however, have challenged the health and safety of some flame retardants designed to protect against soft furnishing fires. And, a bill pending in California would ban the use of certain halogenated flame retardants in that state.

Today, recipes for making PUFs result in foams in which fire retardants are embedded in the interior. In contrast, the experimental technology uses the carbon nanofiber fire retardant as a coating that covers all the nooks and crannies on the sponge-like PUF surface. The new approach, says Davis, should be attractive to PUF manufacturers because the surface treatment has the potential to deliver a low flammability PUF without major change to the foam manufacturing process, thus saving time and money.

The NIST-Texas A&M team coated square samples of commercially available PUF with four bilayers of a carbon nanofiber-polymer combination.** The average thickness of the coating was about 360 nanometers, increasing the mass of the foam by only 3 percent. By themselves, the carbon nanofibers accounted for 1.6 percent of the foam mass. Since the carbon nanofibers are only in the coating, all the carbon nanofibers are clumped like matted whiskers within the top 360 nanometers of the surface—assembled into the fire-blocking armor.

The team used a standard benchtop fire test to measure the fire performance of coated and uncoated PUF. The carbon nanofiber coatings reduced PUF flammability (measured as the peak heat release rate from an ignited specimen) by 40 percent. That result was more than 3 times better than achieved by putting the same carbon nanofibers in the foam (part of the foam recipe).

When compared at the same concentrations, the carbon nanofiber coating significantly outperforms three classes of commercially available flame retardants commonly used in PUF. Reductions in flammability achieved with the coating, according to the researchers, were 158 percent better than the reduction calculated for nonhalogens, 288 percent better than halogens, and 1,138 percent better than halogen-phosphorous flame retardants.

Additionally, the experimental coating "prevents the formation of a melt pool of burning foam, which in a real fire scenario, may further reduce the resulting fire threat of burning soft furnishings," the authors write.

* Y.S. Kim, R. Davis, A.A. Cain and J.C. Grunlan, Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer. Vol. 52, Issue 13, June 8, 2011.

** Polyethylenimine/carbon-nanofiber.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>