Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coatings Could Help Medical Implants Function Better

18.06.2013
Tiny implants to monitor bodily functions or to provide insulin or any other drug based on immediate need would be an advancement in personalized medicine, but a problem inherent in implants is the tendency of the human immune system to recognize the device as an invader and encapsulate it, preventing the device from doing its job.

Dr. Carmen Scholz of The University of Alabama in Huntsville (UAH) has been working on the customized synthesis of biocompatible polymers that can coat sensors that are then implanted into the body to cloak them from the immune system, often referred to as a stealth character.

“Our research is into anything that you can put onto a device so that the body cannot sense it,” Dr. Scholz said. “You’ve got to make it so the body doesn’t even see it.”

Recent research in which she was involved proved the in-vitro stability and non-toxicity of thin layers of customized block copolymers that coated tiny sensors, which were produced by a collaborator group at the University of Technology in Dresden, Germany. After further testing, the coated sensors could be implanted in patients to sense their blood glucose, carbon dioxide and serum pH levels. The coating utilizes a multi-layer concept that includes a hermetic sealing layer, a chemically inert innermost diffusion barrier for ions and humidity, and a surface layer of amphiphilic block copolymers.

Implanted into a patient beneath the skin, coated sensor data could be monitored wirelessly to control an insulin pump or monitor bodily functions to provide greater information to the physician treating a patient with respiratory problems. Since the coatings make the implants invisible to the immune system, the body doesn’t react to them as an invader and allows them to function. (“Smart Hydrogel-Based Biochemical Microsensor Array for Medical Diagnostics”; M. Guenther, G. Gerlach, T. Wallmersperger, M.N. Avula, S.H. Cho, X. Xie, B.V. Devener, F. Solzbacher, P. Tathireddy, J.J. Magda, C. Scholz, R. Obeid, T. Armstrong; Advances in Science and Technology, Vol. 85 (2013) pp 47-52)

The recent work is an offshoot of Dr. Scholz’ involvement in developing biocompatible coatings for the Boston Retinal Implant Project, founded in the 1980s and supported by the Veterans Administration. The project has been successful in developing medical devices to restore some degree of vision to patients who have gone blind from retinitis pigmentosa or age-related macular degeneration.

In that work, biocompatible coatings were needed to adapt retinal devices so that they would not be rejected while being used to deliver electrical signals to the brain and restore sight.

“I can make coatings for all sorts of implants,” Dr. Scholz said. “That’s our expertise, making these kinds of coatings. We can custom-make them.” But the applications for the coatings don’t stop at sensors and devices.

“We can make coatings and ‘decorate’ them with delivery systems for various medicines,” she said. “Physicians have told me that their biggest challenge with implanting devices is the trauma associated with surgery, which causes swelling. Swelling hinders healing. Loading the delivery systems with drugs that reduce swelling could be one way to speed up healing. Not only would these coatings make the device invisible to the body, they can also be used to help with the recovery process.

“All of these polymers, because of their chemical nature, lend themselves to drug delivery systems,” Dr. Scholz said. “All of this is really a neat chemistry.”

Dr. Scholz’ technique is unique because it uses no heavy metals to catalyze the polymerizations. That sets it apart from other researchers, who work on similar polymer systems but often use heavy metals and then have to remove them during the process.

“I contend that if I do not put it in,” she said, “I don’t have to worry about getting it back out.”

Further advances in the work at UAH depend on finding funding for the research. “The ideas are there and we have the proofs of concept of the ideas, but we need the funding,” Dr. Scholz said. “I can draw out the chemistry for you and show you how it can be done, but all that costs money.”

Jim Steele | Newswise
Further information:
http://www.uah.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>