Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clarification of Dynamical Process of Aluminum Surface Oxidation

NIMS researchers have solved a 20 year old riddle concerning the reaction mechanism of aluminium surface oxidation

Dr. Mitsunori Kurahashi, a Principal Researcher of the NIMS Nano Characterization Unit, and Dr. Yasushi Yamauchi, a Group Leader in the same unit, presented decisive evidence clarifying the dynamical process of aluminum surface oxidation by using a molecular oxygen (O2) beam with a controlled molecular alignment, which was originally developed by the researchers, and thereby settled a 20-year dispute regarding the reaction mechanism.

Dr. Mitsunori Kurahashi, a Principal Researcher of the Nano Characterization Unit (Unit Director: Daisuke Fujita), National Institute for Materials Science (President: Sukekatsu Ushioda) and Dr. Yasushi Yamauchi, a Group Leader in the same unit, presented decisive evidence clarifying the dynamical process of aluminum surface oxidation by using an aligned O2 beam, which was originally developed by the researchers, and thereby settled a dispute which had continued for 20 years regarding the reaction mechanism.

Aluminum is widely used as a corrosion-resistant lightweight material despite its high reactivity for O2 because the dense oxide film that forms on the surface prevents corrosion by oxygen, etc. in the air. In the field of fundamental surface science, O2 adsorption on aluminum surfaces had been investigated for many years as the most representative system of surface oxidation.

However, previous experimental and/or theoretical studies on the atomic-scale process of O2 adsorption/dissociation contradict with each other.

As a result, the mechanism of this simple surface reaction still remained unclear, in spite of the research extending over more than 20 years.

Using an aligned O2 beam developed by the researchers, the team headed by Dr. Kurahashi clarified that the probability of O2 adsorption on an aluminum surface depends strongly on the alignment of the O2 molecular axis.

The NIMS researchers demonstrated that low velocity O2 molecules with kinetic energies of 0.1eV or less adsorb only when their axes are nearly parallel to the surface, whereas, O2 molecules in any molecular orientations can adsorb when the kinetic energy exceeds 0.2eV. Until now, O2 molecules with its axis perpendicular to the surface had been considered to adsorb under low energy conditions, and this had long confused the discussion on the reaction mechanism.

However, the present research has concluded that this reaction mechanism is not true.

This research also explains the previous experimental results, which had appeared contradictory, and thus elucidated the whole atomic-scale dynamical process of O2 adsorption on an aluminum surface, which had been unclear for many years. Moreover, this research indicates that the slight activation energy difference of 0.1 eV among different molecular orientations needs to be considered for the future study of O2 adsorption on surfaces. O2 adsorption is important not only in the oxidation of the material itself, but also in the catalytic processes happening on the surfaces of fuel cell electrodes, etc.

Expensive rare metals such as platinum are used as catalysts that efficiently dissociate O2 molecules. The aligned O2 beam used in this research would be useful not only in reaction analysis, but also in research on substitute catalysts.


Mitsunori Kurahashi
Principal Researcher, Spin Characterization Group,
Nano Characterization Unit, NIMS
E-Mail: kurahashi.
Journal information
These results were published online on June 13 (local time) in "Physical Review Letters," which is a journal of the American Physical Society.

Funding information

These research results were achieved as part of the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research/Basic Research (B) “Development of a Single Spin-Rotational State-Selected O2 Beam and its Application to Surface Reaction Analysis” (Research Representative: Mitsunori Kurahashi) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the NIMS 3rd Mid-Term Program Project “Development and Application of Advanced Material Characterization Technologies” (Leader: Daisuke Fujita).

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>