Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clarification of Dynamical Process of Aluminum Surface Oxidation

05.07.2013
NIMS researchers have solved a 20 year old riddle concerning the reaction mechanism of aluminium surface oxidation

Dr. Mitsunori Kurahashi, a Principal Researcher of the NIMS Nano Characterization Unit, and Dr. Yasushi Yamauchi, a Group Leader in the same unit, presented decisive evidence clarifying the dynamical process of aluminum surface oxidation by using a molecular oxygen (O2) beam with a controlled molecular alignment, which was originally developed by the researchers, and thereby settled a 20-year dispute regarding the reaction mechanism.

Dr. Mitsunori Kurahashi, a Principal Researcher of the Nano Characterization Unit (Unit Director: Daisuke Fujita), National Institute for Materials Science (President: Sukekatsu Ushioda) and Dr. Yasushi Yamauchi, a Group Leader in the same unit, presented decisive evidence clarifying the dynamical process of aluminum surface oxidation by using an aligned O2 beam, which was originally developed by the researchers, and thereby settled a dispute which had continued for 20 years regarding the reaction mechanism.

Aluminum is widely used as a corrosion-resistant lightweight material despite its high reactivity for O2 because the dense oxide film that forms on the surface prevents corrosion by oxygen, etc. in the air. In the field of fundamental surface science, O2 adsorption on aluminum surfaces had been investigated for many years as the most representative system of surface oxidation.

However, previous experimental and/or theoretical studies on the atomic-scale process of O2 adsorption/dissociation contradict with each other.

As a result, the mechanism of this simple surface reaction still remained unclear, in spite of the research extending over more than 20 years.

Using an aligned O2 beam developed by the researchers, the team headed by Dr. Kurahashi clarified that the probability of O2 adsorption on an aluminum surface depends strongly on the alignment of the O2 molecular axis.

The NIMS researchers demonstrated that low velocity O2 molecules with kinetic energies of 0.1eV or less adsorb only when their axes are nearly parallel to the surface, whereas, O2 molecules in any molecular orientations can adsorb when the kinetic energy exceeds 0.2eV. Until now, O2 molecules with its axis perpendicular to the surface had been considered to adsorb under low energy conditions, and this had long confused the discussion on the reaction mechanism.

However, the present research has concluded that this reaction mechanism is not true.

This research also explains the previous experimental results, which had appeared contradictory, and thus elucidated the whole atomic-scale dynamical process of O2 adsorption on an aluminum surface, which had been unclear for many years. Moreover, this research indicates that the slight activation energy difference of 0.1 eV among different molecular orientations needs to be considered for the future study of O2 adsorption on surfaces. O2 adsorption is important not only in the oxidation of the material itself, but also in the catalytic processes happening on the surfaces of fuel cell electrodes, etc.

Expensive rare metals such as platinum are used as catalysts that efficiently dissociate O2 molecules. The aligned O2 beam used in this research would be useful not only in reaction analysis, but also in research on substitute catalysts.

FOR MORE INFORMATION

Mitsunori Kurahashi
Principal Researcher, Spin Characterization Group,
Nano Characterization Unit, NIMS
TEL:+81-29-859-2827
FAX:+81-29-859-2801
E-Mail: kurahashi. mitsunori@nims.go.jp
Journal information
These results were published online on June 13 (local time) in "Physical Review Letters," which is a journal of the American Physical Society.

Funding information

These research results were achieved as part of the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research/Basic Research (B) “Development of a Single Spin-Rotational State-Selected O2 Beam and its Application to Surface Reaction Analysis” (Research Representative: Mitsunori Kurahashi) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the NIMS 3rd Mid-Term Program Project “Development and Application of Advanced Material Characterization Technologies” (Leader: Daisuke Fujita).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/06/p201306170.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>