Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Champion nano-rust for producing solar hydrogen

08.07.2013
Water and some nano-structured iron oxide is all it takes to produce bubbles of solar hydrogen. EPFL and Technion scientists just discovered the champion structure to achieve this

In the quest for the production of renewable and clean energy, photoelectrochemical cells (PECs) constitute a sort of a Holy Grail. PECs are devices able of splitting water molecules into hydrogen and oxygen in a single operation, thanks to solar radiation.

"As a matter of fact, we've already discovered this precious chalice, says Michael Grätzel, Director of the Laboratory of Photonics and Interfaces (LPI) at EPFL and inventor of dye-sensitized photoelectrochemical cells. Today we have just reached an important milestone on the path that will lead us forward to profitable industrial applications."

This week, Nature Materials is indeed publishing a groundbreaking article on the subject. EPFL researchers, working with Avner Rotschild from Technion (Israel), have managed to accurately characterize the iron oxide nanostructures to be used in order to produce hydrogen at the lowest possible cost. "The whole point of our approach is to use an exceptionally abundant, stable and cheap material: rust," adds Scott C. Warren, first author of the article.

At the end of last year, Kevin Sivula, one of the collaborators at the LPI laboratory, presented a prototype electrode based on the same principle. Its efficiency was such that gas bubbles emerged as soon as it was under a light stimulus. Without a doubt, the potential of such cheap electrodes was demonstrated, even if there was still room for improvement.

By using transmission electron microscopy (TEM) techniques, researchers were able to precisely characterize the movement of the electrons through the cauliflower-looking nanostructures forming the iron oxide particles, laid on electrodes during the manufacturing process. "These measures have helped us understand the reason why we get performance differences depending on the electrodes manufacturing process", says Grätzel.

By comparing several electrodes, whose manufacturing method is now mastered, scientists were able to identify the "champion" structure. A 10x10 cm prototype has been produced and its effectiveness is in line with expectations. The next step will be the development of the industrial process to large-scale manufacturing. A European funding and the Swiss federal government could provide support for this last part.

Evidently, the long-term goal is to produce hydrogen – the fuel of the future – in an environmentally friendly and especially competitive way. For Michael Grätzel, "current methods, in which a conventional photovoltaic cell is coupled to an electrolyzer for producing hydrogen, cost 15 € per kilo at their cheapest. We're aiming at a € 5 charge per kilo".

Michael Grätzel | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>