Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cement design should take into account the water confined in the smallest pores

10.08.2016

A researcher at the UPV/EHU-University of the Basque Country is participating in the study of the stresses of confined water in the micropores of cement at extreme temperatures

As it is a basic building material used across the world, cement is subjected to a vast range of conditions, both physiological and meteorological, no matter whether they are caused by extreme temperatures and humidity, pressure, etc. It is possible to find conditions ranging from -80 ºC, in places such as the scientific bases in the Antarctic, to several hundreds of degrees in infrastructures close to heat sources or in the case of fires, for example.


At low temperatures, from inside towards the outside, exerted by the water molecules, and at high temperatures from outside towards the inside caused by the absence of the molecules.

Credit: Hegoi Manzano - UPV/EHU

These variations in humidity and temperature are translated into physical processes involving evaporation or freezing of the water contained in the cement paste, which often cause stresses and even micro-cracking inside the cement.

Characterizing the response to these phenomena affecting the confined water in the smallest pores of the cement "is hugely important as a large proportion of the water, about 30 %, is located in these small spaces, so to a great extent it contributes towards the final properties of the material," explained Hegoi Manzano, a researcher in the UPV/EHU's department of Condensed Matter Physics, and author of the study in collaboration with a research group of the University of Tohoku in Japan.

Given the complexity involved in studying the behaviour of the water located in such tiny pores of approximately 1 nanometre in size by means of experimental channels, the researchers resorted to molecular simulation methods that "imitate" the interactions among the atoms that make up the cement in order to determine how they behave as a whole and the properties that these interactions are translated into," he explained. The temperature range they studied was from -170 ºC to 300 ºC.

Stresses at both extremes

In the results obtained in the simulations they were able to observe that at both extremes of temperature "significant volume changes owing to water physics take place. Through totally opposite effects we arrived at the same consequences", he remarked. At high temperatures the water evaporates and disappears from the pores. In these conditions the pressure brought to bear by the material itself may cause the empty pores to collapse and micro cracking to be created which, in particularly serious cases, could cause the material to collapse.

At the other extreme, at extremely low temperatures, what happens is that the water freezes and therefore expands. "In these conditions it should be highlighted that the frozen water does not manage to form ice because of the small space in which it is located; the water molecules cannot order themselves to form a crystalline ice structure," he stressed. But the expansion it undergoes is enough to create stresses in the cement and likewise cause micro cracking.

The information extracted from this study can be used to "modify the formulation of the cement for infrastructures that are going to be located in environments with extreme temperatures. Let us take for example an oil company: knowing the stresses and forces that may be created in the cement, they would have the chance to change certain design factors, such as the additives added to the cement to compensate for the expansion or collapsing of the material in oil wells. That would be the ideal application of the work," concluded Manzano.

###

Additional information

Hegoi Manzano-Moro has a PhD in Chemistry and works as a Temporary Contractual Lecturer in the UPV/EHU's department of Condensed Matter Physics. This work is the result of the collaboration he has with Patrick A. Bonnaud, a researcher at the University of Tohoku in Japan.

Bibliographical reference

P. A. Bonnaud, H. Manzano, R. Miura, A. Suzuki, N. Miyamoto, N. Hatakeyama, A. Miyamoto. Temperature Dependence of Nanoconfined Water Properties: Application to Cementitious Materials. J. Phys. Chem. C, 2016, 120 (21), pp 11465-11480. DOI: 10.1021/acs.jpcc.6b00944. Publication Date (Web): May 10, 2016

Media Contact

Naiara Billalabeitia
bizkaiakomunikazioa@ehu.eus
0034-601-3453

 @upvehu

http://www.ehu.es 

Naiara Billalabeitia | EurekAlert!

Further reports about: Cement building material frozen water high temperatures pores tiny pores

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>