Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell phones could double as night vision devices

05.05.2010
Call it Nitelite: The newest app for cell phones might be night vision.

A University of Florida engineering researcher has crafted a nickel-sized imaging device that uses organic light-emitting diode technology similar to that found in cell phone or laptop screens for night vision. But unlike night vision goggles, which are heavy and expensive, the device is paper-thin, light and inexpensive, making it a possible add-on to cell phone cameras, even eyeglasses, once it is enlarged.

"Really, this is a very inexpensive device," said Franky So, a UF professor of materials science and engineering. "Incorporating it into a cell phone might not be a big deal."

So is the lead author of a paper about the infrared-to-vision device that appeared in a recent issue of the journal Advanced Materials. Do Young Kim, a postdoctoral associate in materials science and engineering, co-authored the paper and collaborated with So on the project.

Standard night vision goggles use a photocathode to convert invisible infrared light photons into electrons. The electrons are accelerated under high voltage and driven into a phosphorous screen, producing greenish images of objects not visible to the eye in darkness. The process requires thousands of volts and a cathode ray tube-like vacuum tube made of thick glass. That is why the goggles tend to be bulky and heavy.

So's imaging device replaces the vacuum tube with several layers of organic semiconductor thin film materials. The structure is simple: It consists of a photodetector connected in series with an LED. When operating, infrared light photons are converted into electrons in the photodetector, and these photo-generated electrons are injected into the LED, generating visible light. The device – versions range from millimeter- to nickel-size -- currently uses glass, but it could be made with plastics, which would make it lightweight.

Conventional night vision goggles or scopes weigh 1 to 2 pounds, with price tags ranging from hundreds to thousands of dollars. Sized for cell phones, So said, his imaging devices weigh just a couple of ounces and would be inexpensive to manufacture because factories could use the same equipment used today to make laptop screens or flat-screen televisions.

So said other applications could include night vision technology for car windshields, or even for standard glasses to use at night.

So's research is funded by Nanoholdings LLC, a Connecticut-based diversified nano-energy company that licenses and develops nano-energy discoveries in partnership with universities and their scientists, and the Defense Advanced Research Projects Agency. A UF startup company, NirVision, a portfolio company of Nanoholdings, was recently formed to further develop and commercialize the technology for different market segments.

Franky So | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>