Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cartilage Comeback

11.10.2010
Materials Scientists from Jena University (Germany) fight Arthrosis and Osteoporosis

At some point it catches up with everyone. With increasing age joints and bones wear out. When for instance the cartilage, functioning as cushions between the joints becomes worn out, in most cases only the surgeon implanting a replacement part helps. Until now at least.

Scientists of the german Jena University – together with colleagues from France, England, Germany and Switzerland – are working on a tiny device that is being implanted in the joint and is supposed to trigger the regeneration of cartilage produced naturally in the body. The project OPHIS (Composite Phenotypic Triggers for Bone and Cartilage Repair) is subsidized with 4 Million Euro from the EU, of which 350.000 go to the Jena University. The project is running for four years.

Mostly Arthrosis and Arthritis patients will be able to profit by the results of the project, as the regeneration of the cartilage can be reactivated on smaller lacerations when the doctor recognizes the illnesses early enough. “Even though there are products like this on the market,” says Prof Dr Frank Müller, Materials Scientist of the Jena University. “None of them adheres actively with the bone underneath. This is exactly the improvement of our implant.”

The cellulose implant, of one centimeter diameter, is sponge-like and has two different surfaces. “The implant can substantially adhere to the bone through inorganic activation with calcium phosphate-nanoparticles on its lower surface,” explains the Jena Professor for Science and Technology of Surfaces and Interfaces.

“Scientists of another sub-project in Brighton in England apply growth factors on the opposite, porous surface of the implant to trigger the regeneration and ingrowth of cartilage cells.” Materials scientists of Jena University are able to produce the required porous surfaces with an especially developed process via ice templating. “For that purpose vegetal cellulose is being dissolved in water containing solvent and then deep-frozen at a defined speed,” says Prof Müller. “The ice crystals are so grown at a controllable temperature gradient. Afterwards the cellulose is being freeze-dried, so that little holes – pores – take the place of the ice cristals, as the water is being changed from a solid to a gaseous aggregate state. So a micro porous surface is created according to a given specification.” A facility especially for this process had been constructed in Jena.

Apart from cellulose implants composites from cellulose and collagen are being tested. These are even more promising, as the structural protein collagen is an important organic part of the connective tissue and thereby also of the bone and cartilage.

Moreover the scientists of the research project are aiming to fighting osteoporosis. Again tiny implants are supposed to stop the bone loss and to trigger the bone growth. These implants constist of bacterial cellulose, which is developed in co-operation with the research group of Dr Dana Kralisch at the Institute for Technical Chemistry and Environmental Chemistry at the Jena University. “Certain bacterial strains use glucose in their culture medium to produce cellulose,“ the project manager of Jena University explains. “When you influence the production by a shaking movement of the fluid, small pellets will form. These structures which are porous by nature are provided with defined protein sequences – so-called peptides – and are implanted into the bone. Bone forming cells migrate and the bone growth is re-stimulated.“

Contact:
Prof Dr Frank A. Müller
Institute of Materials Science and Technology
Friedrich-Schiller-University Jena
Löbdergraben 32
D-07743 Jena
Phone: 0049 3641 947750
Email: Frank.Mueller[at]uni-jena.de

Sebastian Hollstein | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>