Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bottling Up Sound Waves

05.08.2014

Acoustic Bottle Beams from Berkeley Lab Hold Promise for Imaging, Cloaking, Levitation and Other Apps

There’s a new wave of sound on the horizon carrying with it a broad scope of tantalizing potential applications, including advanced ultrasonic imaging and therapy, and acoustic cloaking, levitation and particle manipulation. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a technique for generating acoustic bottles in open air that can bend the paths of sound waves along prescribed convex trajectories.


After being emitted from a planar-phased source, sound energy forms a 3D acoustic bottle of high-pressure walls and a null region in the middle. Pressure field at bottom shows self-bending ability of the bottle beam to circumvent 3D obstacles. Dashed arrows indicate wave front direction. (Courtesy of Xiang Zhang group)

Sound waves move much like light waves. They travel on a straight path but this path – through reflection, diffraction or refraction – can be bent. This is the basis for ultrasound medical imaging and non-destructive testing of materials. An intense search has been underway in recent years to develop techniques that can bend the paths of sound waves along a curved trajectory so as to meet the more stringent demands of super high-resolution imaging, acoustic cloaking and other exotic applications. Artificial nanoconstructs known as “metamaterials” have been engineered that can bend sound waves sufficiently but the nature of these materials places limits on their applications, especially for biological purposes.

“We need to find ways to bend acoustic wave fields without depending on the use of a highly engineered medium,” says Xiang Zhang, director of Berkeley Lab’s Materials Sciences Division. “With our bottle beam technique, we can design and synthesize acoustic bottles that are capable of directing sound waves along paths of desired curvature through homogeneous space without the need of metamaterials or any other highly engineered medium.”

Zhang, who also holds the Ernest S. Kuh Endowed Chair Professor at the University of California (UC) Berkeley, directs the National Science Foundation’s Nano-scale Science and Engineering Center, and is a member of the Kavli Energy NanoSciences Institute (ENSI) at Berkeley. He and his group have gained international acclaim for research involving the manipulation of light and sound that has yielded some extraordinary results – an invisibility cloaking device, a plasmonic Airy beam that curves light, the world’s first acoustic hyperlens, a four-dimensional crystal that will keep perfect time forever, and much more.

In this latest project, three members of Zhang’s research group, Peng Zhang, Tongcang Li and Jie Zhu, created an acoustic “bottle” that features a three-dimensional curved shell, in which a wall of high acoustic pressure surrounds a null pressure region in the middle. Sound waves forming the bottle are concentrated into a beam that travels through the high pressure wall of its curved shell. The sound waves are generated by an array of loud speakers, 1.5 centimeters in diameter and spaces 2.5 centimeters apart, operating at a frequency of 10 kilo Hertz (kHz) and can be launched along a designated trajectory by precisely adjusting the phase profile of the speaker array.

“Since the principle of adjusted phased arrays is well-established and now being used in ultrasound imaging, we can directly apply our acoustic bottle beam technique to current acoustic systems,” says Peng Zhang, lead author of a paper in Nature Communications that described this work. (See below for details). “Our technique offers a new degree of freedom for controlling the flow of acoustic energy at will.”

Because the high pressure wall of the acoustic bottle exerts a pulling force, there are no sound waves passing through the null pressure interior of the bottle and the bottle can be used for acoustic trapping. Furthermore, the bottle beam is not influenced by any obstacle placed inside the bottle and can even restore itself when an obstacle blocks its path, as the researcher demonstrated with a steel rod.

“Our acoustic bottle beams open new avenues to applications in which there is a need to access hard-to-reach objects hidden behind obstacles, such as acoustic imaging and therapeutic ultrasound through inhomogeneous media,” co-author Li says. “We can also use an acoustic bottle as a cloaking device, re-routing sound waves around an object and then recovering them in their original form, making the object invisible to sonar detection.”

Acoustic bottle beams might also serve another application that ranks among the hottest in the high-tech community these days – acoustic levitation, in which sound waves are used to lift and manipulate millimeter-sized objects, including particles, microorganisms and droplets of water. A recent study reporting the use of standing sound waves for 3D graphic printing was hailed as a major breakthrough.

“Our acoustic bottle beams can do the same thing but offer better stability, true 3D graphics, and more freedom of motion as our beam can propagate along a curved path,” co-author Zhu says. “We can also levitate much larger 3D objects than can be lifted and manipulated with other acoustic levitation techniques.”

Sui Yang, another co-author of the Nature Communications paper and member of Zhang’s research group, notes that the trapping capability for objects larger than the half-wavelength offered by acoustic bottle beams may also add important new tools for material-related studies.

“These giant acoustic traps could lead to new technologies and devices for a variety of applications in chemistry, materials, as well as biosciences,” he says. “For example, by creating this three-dimensional bottle-like acoustic trap, we could use it as a micro-chemical reactor and manipulation of biological trafficking devices.”

The Nature Communications paper describing this research is titled “Generation of acoustic self-bending and bottle beams by phase engineering.” Additional co-authors were Xuefeng Zhu, Sui Yang, Yuan Wang and Xiaobo Yin.

This research was supported by the Office of Naval Research’s MURI program.

Additional Information

For more about the research of Xiang Zhang go here

Xiang Zhang can be reached for comment at: 510-643-4578.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.  For more, visit www.lbl.gov.

Berkeley Lab is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

Lynn Yarris | Eurek Alert!
Further information:
https://newscenter.lbl.gov/2014/08/04/bottling-up-sound-waves/

Further reports about: Department Energy Laboratory Nature acoustic energy pressure waves

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>