Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech materials made simple – crystal structures altered by a single protein

12.03.2015

Nacre is not just something pretty to be used for jewellery and decoration. It possesses an intricate layer structure with high strength and hardness, and the naturally formed crystals it contains have some particular properties. This is why industry is working to produce similar materials using biological models.

Scientists in Haifa and Saarbrücken have now succeeded in replicating the combination of calcium carbonate and biopolymeric compounds which nature took millions of years and a host of environmental factors to achieve. Using a very simple method, they have been able to show that a single protein species is enough to produce specific effects on the formation of crystal structures.


Perlucin has several characteristic protein strands, here indicated by colored loops in a BallView model. They are assumed to cause the observed structural alterations in calcium carbonate crystals.

Copyright: INM; only free within this press release

The results of their research have recently been published as a cover publication in the journal Chemistry of Materials.

In nacre, layer lattices of inorganic calcium carbonate alternate with layers of organic material. Chitin, collagen and various proteins ensure that the calcium carbonate grows in these defined layers. What role the proteins play during growth had not previously been explained, but the assumption was that several proteins acted together to control the structure of the calcium carbonate lattice as well as themselves forming part of the nacreous layers.

However, Ingrid Weiss of the INM – Leibniz Institute for New Materials in Saarbrücken and her colleague Boaz Pokroy at the Technion Israel Institute of Technology have now shown that the crystal lattice of calcium carbonate can be altered using just a single protein species.

“This finding simplifies matters and opens up new possibilities for white biotechnology”, says Weiss, who is Head of the Biomineralization Program at the INM. “Until now, white biotechnology has labored under the idea that mineralization could not be recreated using biological models, because it was assumed that it took a combination of several proteins and a number of factors that were not readily understandable to make biomineralization possible”, she explains. If the natural processes appeared too complicated, they would not be pursued in industrial development.

Pokroy and Weiss have now proved that it need not be that complicated.

In their experiments, the researchers extracted the protein perlucin from abalone (Haliotis) shells and combined it with green fluorescent protein (GFP), a trick which enabled them to convert the insoluble perlucin to a water-soluble form. They added this solution at different concentrations to a calcium carbonate solution and examined the crystals produced. The results were compared to crystals produced from a pure calcium carbonate solution and crystals produced from a calcium carbonate solution with GFP.

Only the dissolved perlucin was incorporated in the inorganic carbonate lattice, where it produced notable and wide-ranging distortions to the lattice. The effect follows a principle of “all or nothing”: small quantities of protein are already enough to cause defined lattice distortions. Once the distortion starts, it then reproduces itself continually across the lattice. “GFP alone simply coexists with calcium carbonate – it surrounds the calcium carbonate lattice like a jacket without changing it”, explains the biomineralization expert. As in a shell, it seems to be the perlucin that influences the growth and structure of the crystal lattice.

To explain this phenomenon, the researchers used the INM’s expertise in mussel proteins and the expertise in crystal analysis at the Institute in Haifa. This combination made it possible to observe the reactions of perlucin in the crystal lattice. The scientists are now keen to see whether other proteins have specific effects on the structure and functionality of inorganic crystal lattices.

Original publication:
Eva Weber, Leonid Bloch, Christina Guth, Andy N. Fitch, Ingrid M. Weiss and Boaz Pokroy; Chem. Mater., 2014, 26 (17), pp 4925–4932,
DOI: 10.1021/cm500450s; http://pubs.acs.org/doi/abs/10.1021/cm500450s

Your experts:
Dr. Ingrid Weiss (PD)
INM – Leibniz Institute for New Materials
Head Biomineralization
Tel: 0681-9300-318
ingrid.weiss@inm-gmbh.de

Prof. Boaz Pokroy
Technion – Israel Institute of Technology; Haifa
Bio-Inspired Surface Engineering and Biomineralization
Phone: +972-4-8294584
bpokroy@tx.technion.ac.ilI

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Dr. Carola Jung | idw - Informationsdienst Wissenschaft
Further information:
http://www.inm-gmbh.de

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>