Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biopolymer - designer interfaces between biological and artificial systems

13.12.2012
In their recently published review article in the Science and Technology of Advanced Materials, Yasuhiko Iwasaki at Kansai University and Kazuhiko Ishihara at the University of Tokyo describe how developments in synthesis techniques have liberated the polymer MPC’s potential for a huge range of medical and biological applications.

A polymer inspired by the lipids in cell membranes is proving an invaluable biomaterial. Like the cell membrane, the polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) can provide a surface for biological reactions to take place, but it can also suppress unfavourable processes.

In their recently published review article, Yasuhiko Iwasaki at Kansai University and Kazuhiko Ishihara at the University of Tokyo in Japan describe how developments in synthesis techniques by showing that the 2-methacryloyloxyethyl phosphorylcholine (MPC) have liberated the polymer’s potential for a huge range of medical and biological applications.

In fact the polymers were already attracting interest in the early 1970s. However until more facile synthesis techniques were developed investigations were limited and the polymer was little understood. By 1999 MPC polymers were being produced on an industrial scale, allowing more substantial studies. MPC is easily polymerized in a range of architectures. The chemical can suppress reactions such as protein adsorption and cell adhesion and has a high and readily adjustable solubility in water. These versatile properties lend MPC polymers to a range of applications.

The authors also describe methods for generating the polymer for effective use in non-fouling coatings. Formed into poly(MPC) brush structures with specified chain architectures, they can also be used as surfaces for controlling cell functions. In addition, the researchers explain how surface modifications with MPC polymers are effective in improving blood compatibility. The polymers can suppress protein adsorption, platelet adhesion, and platelet activation at blood-contacting surfaces and they can also be solute permeable. As such they are well suited for coating cardiovascular applications such as stents, cardiopulmonary bypasses, and ventricular assist devices.

Based on the fact that “MPC and various kinds of MPC polymers are now available commercially worldwide, and many medical devices treated with MPC polymers are used in clinics,” they underline how far research into applications of MPC has advanced, and indicate how many possibilities remain for exploiting the chemical further.

Media contacts:
Mikiko Tanifuji, National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Journal information
Yasuhiko Iwasaki (1) and Kazuhiko Ishihara (2) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces, Science and Technology of Advanced Materials Vol. 13 (2012) p. 064101 (doi:10.1088/1468-6996/13/6/064101).
URL: http://dx.doi.org/10.1088/1468-6996/13/6/064101

Authors Affiliation
1. Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan

*E-mail address: yasu.bmt@kansai-u.ac.jp

2. Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

*E-mail address: ishihara@mpc.t.u-tokyo.ac.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>