Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioasphalt Developed at Iowa State to be Used, Tested on Des Moines Bike Trail

11.10.2010
Iowa State University’s Christopher Williams was just trying to see if adding bio-oil to asphalt would improve the hot- and cold-weather performance of pavements. What he found was a possible green replacement for asphalt derived from petroleum.

That finding recently moved from Williams’ laboratory at the Institute for Transportation’s Asphalt Materials and Pavements Program at Iowa State to a demonstration project. The project paved part of a Des Moines bicycle trail with an asphalt mixture containing what is now known as Bioasphalt.

If the demonstration and other tests go well, “This would be great stuff for the state of Iowa,” said Williams, an associate professor of civil, construction and environmental engineering.

He said that’s for a lot of reasons: Asphalt mixtures derived from plants and trees could replace petroleum-based mixes. That could create a new market for Iowa crop residues. It could be a business opportunity for Iowans. And it saves energy and money because Bioasphalt can be mixed and paved at lower temperatures than conventional asphalt.

Bio-oil is created by a thermochemical process called fast pyrolysis. Corn stalks, wood wastes or other types of biomass are quickly heated without oxygen. The process produces a liquid bio-oil that can be used to manufacture fuels, chemicals and asphalt plus a solid product called biochar that can be used to enrich soils and remove greenhouses gases from the atmosphere.

Robert C. Brown – an Anson Marston Distinguished Professor of Engineering, the Gary and Donna Hoover Chair in Mechanical Engineering and the Iowa Farm Bureau director of Iowa State's Bioeconomy Institute – has led research and development of fast pyrolysis technologies at Iowa State. Three of his former graduate students – Jared Brown, Cody Ellens and Anthony Pollard, all December 2009 graduates – have established a startup company, Avello Bioenergy Inc., that specializes in pyrolysis technology that improves, collects and separates bio-oil into various liquid fractions.

Williams used bio-oil fractions provided by Brown’s fast pyrolysis facility at Iowa State’s BioCentury Research Farm to study and develop Bioasphalt. That research was supported by the Iowa Energy Center and the Iowa Department of Transportation.

Avello has licensed the Bioasphalt technology from the Iowa State University Research Foundation Inc. and has produced oak-based bio-oil fractions for the bike trail project using funding from the Iowa Department of Economic Development. Williams said the project will include a mix of 5 percent Bioasphalt.

Jeb Brewer, the city engineer for the City of Des Moines, said the Bioasphalt will be part of phase two of the Waveland Trail on the city’s northwest side. The 10-foot-wide trail will run along the west side of Glendale Cemetery from University Avenue to Franklin Avenue.

Brewer said the demonstration project is a good fit for the city.

“We have a fairly active program for finding ways to conserve energy and be more sustainable,” he said. “We’re interested in seeing how this works out and whether it can be part of our toolbox to create more sustainable projects.”

Contractors involved in the Bioasphalt demonstration project are Elder Corp. of Des Moines, Bituminous Materials and Supplies of Des Moines and Grimes Asphalt and Paving Corp. of Grimes with the Asphalt Paving Association of Iowa supporting the project.

Iowa State’s Williams said a successful demonstration would lead to more pavement tests containing higher and higher percentages of Bioasphalt.

“This demonstration project is a great opportunity,” he said. “We’re introducing a green technology into a green environment in Des Moines. And it’s a technology that’s been developed here in Iowa.”

Avello® and Bioasphalt® are registered trademarks of Avello Bioenergy, Inc.

Christopher Williams, Civil, Construction and Environmental Engineering and the Institute for Transportation's Asphalt Materials and Pavements Program, (515) 294-4419, rwilliam@iastate.edu
Jeb Brewer, City of Des Moines, (515) 283-4920, jebrewer@dmgov.org
Dennis Banasiak, Avello Bioenergy Inc., (443) 326-2755, denban@avellobioenergy.com
Bill Haman, Iowa Energy Center, (515) 294-8819, whaman@energy.iastate.edu
Scott Schram, Iowa Department of Transportation, (515) 239-1604, scott.schram@dot.iowa.gov
Josh Redhead, Elder Corp., (515) 266-3111, Josh@eldercorp.com
Bill Kubacki, Bituminous Materials and Supplies, (515) 288-1076, bill.kubacki@asphalt-materials.com
Mike Yonker, Grimes Asphalt and Paving Corporation, (515) 986-3532, mike@grimesasphalt.com
Jim Hibbs, Grimes Asphalt and Paving Corporation, (515) 201-9004, jhibbs@rasmussengroup.com
Bill Rosener, Asphalt Paving Association of Iowa, (515) 233-0015, billr@apai.net
Mike Krapfl, Iowa State University News Service, (515) 294-4917, mkrapfl@iastate.edu

Christopher Williams | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>