Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioasphalt Developed at Iowa State to be Used, Tested on Des Moines Bike Trail

11.10.2010
Iowa State University’s Christopher Williams was just trying to see if adding bio-oil to asphalt would improve the hot- and cold-weather performance of pavements. What he found was a possible green replacement for asphalt derived from petroleum.

That finding recently moved from Williams’ laboratory at the Institute for Transportation’s Asphalt Materials and Pavements Program at Iowa State to a demonstration project. The project paved part of a Des Moines bicycle trail with an asphalt mixture containing what is now known as Bioasphalt.

If the demonstration and other tests go well, “This would be great stuff for the state of Iowa,” said Williams, an associate professor of civil, construction and environmental engineering.

He said that’s for a lot of reasons: Asphalt mixtures derived from plants and trees could replace petroleum-based mixes. That could create a new market for Iowa crop residues. It could be a business opportunity for Iowans. And it saves energy and money because Bioasphalt can be mixed and paved at lower temperatures than conventional asphalt.

Bio-oil is created by a thermochemical process called fast pyrolysis. Corn stalks, wood wastes or other types of biomass are quickly heated without oxygen. The process produces a liquid bio-oil that can be used to manufacture fuels, chemicals and asphalt plus a solid product called biochar that can be used to enrich soils and remove greenhouses gases from the atmosphere.

Robert C. Brown – an Anson Marston Distinguished Professor of Engineering, the Gary and Donna Hoover Chair in Mechanical Engineering and the Iowa Farm Bureau director of Iowa State's Bioeconomy Institute – has led research and development of fast pyrolysis technologies at Iowa State. Three of his former graduate students – Jared Brown, Cody Ellens and Anthony Pollard, all December 2009 graduates – have established a startup company, Avello Bioenergy Inc., that specializes in pyrolysis technology that improves, collects and separates bio-oil into various liquid fractions.

Williams used bio-oil fractions provided by Brown’s fast pyrolysis facility at Iowa State’s BioCentury Research Farm to study and develop Bioasphalt. That research was supported by the Iowa Energy Center and the Iowa Department of Transportation.

Avello has licensed the Bioasphalt technology from the Iowa State University Research Foundation Inc. and has produced oak-based bio-oil fractions for the bike trail project using funding from the Iowa Department of Economic Development. Williams said the project will include a mix of 5 percent Bioasphalt.

Jeb Brewer, the city engineer for the City of Des Moines, said the Bioasphalt will be part of phase two of the Waveland Trail on the city’s northwest side. The 10-foot-wide trail will run along the west side of Glendale Cemetery from University Avenue to Franklin Avenue.

Brewer said the demonstration project is a good fit for the city.

“We have a fairly active program for finding ways to conserve energy and be more sustainable,” he said. “We’re interested in seeing how this works out and whether it can be part of our toolbox to create more sustainable projects.”

Contractors involved in the Bioasphalt demonstration project are Elder Corp. of Des Moines, Bituminous Materials and Supplies of Des Moines and Grimes Asphalt and Paving Corp. of Grimes with the Asphalt Paving Association of Iowa supporting the project.

Iowa State’s Williams said a successful demonstration would lead to more pavement tests containing higher and higher percentages of Bioasphalt.

“This demonstration project is a great opportunity,” he said. “We’re introducing a green technology into a green environment in Des Moines. And it’s a technology that’s been developed here in Iowa.”

Avello® and Bioasphalt® are registered trademarks of Avello Bioenergy, Inc.

Christopher Williams, Civil, Construction and Environmental Engineering and the Institute for Transportation's Asphalt Materials and Pavements Program, (515) 294-4419, rwilliam@iastate.edu
Jeb Brewer, City of Des Moines, (515) 283-4920, jebrewer@dmgov.org
Dennis Banasiak, Avello Bioenergy Inc., (443) 326-2755, denban@avellobioenergy.com
Bill Haman, Iowa Energy Center, (515) 294-8819, whaman@energy.iastate.edu
Scott Schram, Iowa Department of Transportation, (515) 239-1604, scott.schram@dot.iowa.gov
Josh Redhead, Elder Corp., (515) 266-3111, Josh@eldercorp.com
Bill Kubacki, Bituminous Materials and Supplies, (515) 288-1076, bill.kubacki@asphalt-materials.com
Mike Yonker, Grimes Asphalt and Paving Corporation, (515) 986-3532, mike@grimesasphalt.com
Jim Hibbs, Grimes Asphalt and Paving Corporation, (515) 201-9004, jhibbs@rasmussengroup.com
Bill Rosener, Asphalt Paving Association of Iowa, (515) 233-0015, billr@apai.net
Mike Krapfl, Iowa State University News Service, (515) 294-4917, mkrapfl@iastate.edu

Christopher Williams | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>