Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioasphalt Developed at Iowa State to be Used, Tested on Des Moines Bike Trail

11.10.2010
Iowa State University’s Christopher Williams was just trying to see if adding bio-oil to asphalt would improve the hot- and cold-weather performance of pavements. What he found was a possible green replacement for asphalt derived from petroleum.

That finding recently moved from Williams’ laboratory at the Institute for Transportation’s Asphalt Materials and Pavements Program at Iowa State to a demonstration project. The project paved part of a Des Moines bicycle trail with an asphalt mixture containing what is now known as Bioasphalt.

If the demonstration and other tests go well, “This would be great stuff for the state of Iowa,” said Williams, an associate professor of civil, construction and environmental engineering.

He said that’s for a lot of reasons: Asphalt mixtures derived from plants and trees could replace petroleum-based mixes. That could create a new market for Iowa crop residues. It could be a business opportunity for Iowans. And it saves energy and money because Bioasphalt can be mixed and paved at lower temperatures than conventional asphalt.

Bio-oil is created by a thermochemical process called fast pyrolysis. Corn stalks, wood wastes or other types of biomass are quickly heated without oxygen. The process produces a liquid bio-oil that can be used to manufacture fuels, chemicals and asphalt plus a solid product called biochar that can be used to enrich soils and remove greenhouses gases from the atmosphere.

Robert C. Brown – an Anson Marston Distinguished Professor of Engineering, the Gary and Donna Hoover Chair in Mechanical Engineering and the Iowa Farm Bureau director of Iowa State's Bioeconomy Institute – has led research and development of fast pyrolysis technologies at Iowa State. Three of his former graduate students – Jared Brown, Cody Ellens and Anthony Pollard, all December 2009 graduates – have established a startup company, Avello Bioenergy Inc., that specializes in pyrolysis technology that improves, collects and separates bio-oil into various liquid fractions.

Williams used bio-oil fractions provided by Brown’s fast pyrolysis facility at Iowa State’s BioCentury Research Farm to study and develop Bioasphalt. That research was supported by the Iowa Energy Center and the Iowa Department of Transportation.

Avello has licensed the Bioasphalt technology from the Iowa State University Research Foundation Inc. and has produced oak-based bio-oil fractions for the bike trail project using funding from the Iowa Department of Economic Development. Williams said the project will include a mix of 5 percent Bioasphalt.

Jeb Brewer, the city engineer for the City of Des Moines, said the Bioasphalt will be part of phase two of the Waveland Trail on the city’s northwest side. The 10-foot-wide trail will run along the west side of Glendale Cemetery from University Avenue to Franklin Avenue.

Brewer said the demonstration project is a good fit for the city.

“We have a fairly active program for finding ways to conserve energy and be more sustainable,” he said. “We’re interested in seeing how this works out and whether it can be part of our toolbox to create more sustainable projects.”

Contractors involved in the Bioasphalt demonstration project are Elder Corp. of Des Moines, Bituminous Materials and Supplies of Des Moines and Grimes Asphalt and Paving Corp. of Grimes with the Asphalt Paving Association of Iowa supporting the project.

Iowa State’s Williams said a successful demonstration would lead to more pavement tests containing higher and higher percentages of Bioasphalt.

“This demonstration project is a great opportunity,” he said. “We’re introducing a green technology into a green environment in Des Moines. And it’s a technology that’s been developed here in Iowa.”

Avello® and Bioasphalt® are registered trademarks of Avello Bioenergy, Inc.

Christopher Williams, Civil, Construction and Environmental Engineering and the Institute for Transportation's Asphalt Materials and Pavements Program, (515) 294-4419, rwilliam@iastate.edu
Jeb Brewer, City of Des Moines, (515) 283-4920, jebrewer@dmgov.org
Dennis Banasiak, Avello Bioenergy Inc., (443) 326-2755, denban@avellobioenergy.com
Bill Haman, Iowa Energy Center, (515) 294-8819, whaman@energy.iastate.edu
Scott Schram, Iowa Department of Transportation, (515) 239-1604, scott.schram@dot.iowa.gov
Josh Redhead, Elder Corp., (515) 266-3111, Josh@eldercorp.com
Bill Kubacki, Bituminous Materials and Supplies, (515) 288-1076, bill.kubacki@asphalt-materials.com
Mike Yonker, Grimes Asphalt and Paving Corporation, (515) 986-3532, mike@grimesasphalt.com
Jim Hibbs, Grimes Asphalt and Paving Corporation, (515) 201-9004, jhibbs@rasmussengroup.com
Bill Rosener, Asphalt Paving Association of Iowa, (515) 233-0015, billr@apai.net
Mike Krapfl, Iowa State University News Service, (515) 294-4917, mkrapfl@iastate.edu

Christopher Williams | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>