Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientists discover new family of quasicrystals

11.06.2013
Scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have discovered a new family of rare-earth quasicrystals using an algorithm they developed to help pinpoint them.
Quasicrystalline materials may be found close to crystalline phases that contain similar atomic motifs, called crystalline approximants. And just like fishing experts know that casting a line in the right habitat hooks the big catch, the scientists used their knowledge to hone in on just the right spot for new quasicrystal materials discovery.

Their research resulted in finding the only known magnetic rare earth icosahedral binary quasicrystals, now providing a “matched set” of magnetic quasicrystals and their closely related periodic cousins.

The discovery has been published online by the journal Nature Materials in an article, “A family of binary magnetic icosahedral quasicrystals based on rare earth and cadmium.”
“This discovery of binary magnetic quasicrystals provides us with a means of doing a cleaner comparison of structural and magnetic properties between a quasicrystal and its periodic approximant,” said Alan Goldman, Ames Laboratory faculty scientist and a distinguished professor at Iowa State University. “It’s a tremendously exciting thing.”

Goldman is part of the Ames Laboratory’s research group which studies the microscopic properties of crystals through neutron and x-ray scattering performed at Argonne National Laboratory’s Advanced Photon Source. His collaborator, Ames Laboratory faculty scientist and Iowa State University distinguished professor Paul Canfield, was one of the first scientists able to grow single-grain, rare-earth quasicrystals, and his work continues in discovering, growing, and characterizing them.

Since the 1982 discovery of quasicrystals-- intermetallic compounds that are ordered but not periodic--by Nobel Prize winning chemist Dan Shechtman, many have been synthesized by researchers worldwide, and one has even been discovered occurring naturally.

But scientists at the Ames Laboratory, with their expertise in rare earths and magnetism, were beginning to look for the next step after that revolutionary first discovery.

“For the last ten years, we have been moving beyond just the innate beauty of these quasicrystalline structures to find out what else is interesting about them. Are the electrical properties any different? Are the magnetic qualities unusual?” Goldman asked.

Goldman and Canfield, like many researchers around the world began to wonder what magnetic properties would do, extended to the unique design of quasicrystals.

“If you could place magnetism on these quasicrystal structures, what would it look like?” Canfield said the researchers wondered. “You can have antiferromagnets or ferromagnets in the crystalline or periodic example. You have a disordered magnet or spin glass with the amorphous system. This is known. But with quasicrystals, you have an aperiodic arrangement. Will it affect the magnetism in some weird or novel way? It’s a strange environment for magnetism.”

“There’s been a lot of theoretical and experimental work on magnetic quasicrystals and mathematically there’s no reason why magnetic ordering can’t happen,” said Goldman. “But experimentally it was never observed. Why? What does this teach us about magnetism in complex environments?”

A few years ago, a series of periodic approximants of rare-earth cadmium were discovered that did order magnetically by research colleagues in Japan. The Ames Laboratory scientists worked to characterize by scattering the magnetic structures in collaboration with other researchers from France, Japan, and the United States.

Goldman and Canfield suspected that there could be quasicrystals very close to these rare earth cadmium approximants, hidden in very limited regions of temperature and composition space in the phase diagram, and most easily attainable through the flux growth method Canfield has used to grow other quasicrystals. Together with Ames Lab scientists Sergey Bud’ko, Andreas Kreyssig, Kevin Dennis, Mehmet Ramazanoglu, Anton Jesche, and physics graduate student Tai Kong, Goldman and Canfield initiated a new search for magnetic quasicrystals.

Goldman asked Canfield to start by growing the approximant, but Canfield was shooting for both.

“My intent was not just to go to the approximant, but to cool this as far as I could before everything solidified; I was fishing for the binary quasicrystal,” Canfield said. “It was an attempt to survey the system. I know there’s an approximant in there, but is there another surprise?”

And sure enough, there was. Canfield had grown the approximant, but he also found the presence of faceted pentagonal dodecahedra, one of the signatures of quasicrystals. Goldman’s x-ray scattering work confirmed the material as a quasicrystal.

In the rare earth cadmium approximants, there is magnetic order. In the quasicrystalline materials, however, the scientists found spin glass behavior, similar to the magnetic behavior in amorphous materials.

“What we have here is proof of principle. Yes, you can find quasicrystals near approximants; you just have to search the right way,” said Canfield.

“There’s still work to be done; it’s my hope that there is lurking out there a quasicrystalline antiferromagnet, which means an ordered magnetic structure. It hasn’t been theoretically ruled out,” said Goldman. “What I do know is that quasicrystals continue to surprise me.”

The research was supported by DOE’s Office of Science.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the DOE Office of Science X-ray user facilities, visit the DOE Office of Science website.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov
Contacts:
Alan Goldman, Division of Materials Science and Engineering, (515) 294-3585
Paul Canfield, Division of Materials Science and Engineering, (515) 294-6270
Laura Millsaps, Public Affairs, (515) 294-3474

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov
http://www.ameslab.gov/news/news-releases/ames-laboratory-scientists-discover-new-family-quasicrystals

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>