Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ADIR Project: Lasers Recover Valuable Materials


Taking electronic devices apart that are no longer in use to recover valuable raw materials – this is an essential aspect of the future of urban mining. The Fraunhofer-Gesellschaft is taking a pioneering role internationally in the EU project “ADIR - Next generation urban mining – Automated disassembly, separation and recovery of valuable materials from electronic equipment”. Launched in September 2015, this project is scheduled to run until 2019. It comprises nine project partners from four countries, who are researching how strategically important materials from old cell phones and printed circuit boards can be retrieved and recycled.

The Fraunhofer Institute for Laser Technology ILT in Aachen is coordinating this project, which is being funded by the EU as part of the Horizon 2020 program.

Contactless exposure and unsoldering of circuit board components by means of laser radiation in a recycling process of the “ADIR” project.

Conventional material recycling frequently relies on bulk material flow solutions, which use shredding and pyrometallurgical processes. They focus primarily on recovering precious metals such as copper, gold and silver, but are unable to recover other rare materials.

“Elements such as tantalum and tungsten, or rare earths such as neodymium, will continue to play an important role in the industrial manufacture of high-tech electronics,” explains project coordinator Prof. Reinhard Noll from Fraunhofer ILT. “Our new reverse production approach will ensure that we fully exploit the potential that so far has gone untapped.”

Using Laser Technology to Operate Sustainably: Reverse Production

ADIR explores the feasibility of new technologies for the next generation of urban mining. Automated, flexible processes enable the modern recycling of treasures found in urban environments such as defective or unused electronic devices.

Special machines for automated disassembly and removal will combine laser technology, robotics, modern image processing and information technology at different stages of the process. Lasers are suited for a range of tasks – for example, for 3D measurement technology, real-time identification of constituent elements, or contact-free uncovering and desoldering of electronic components. New sorting fractions help to retrieve high-quality materials in a short amount of time.

After analyzing the requirements for materials handling and testing various recycling methods, the ADIR project began developing the process. The scientists first optimized individual process steps for sorting certain components and further processing after each stage on a laboratory scale, and are now developing suitable software and hardware modules that can be combined to form a machine. In 2018, the project partners will build a demonstrator in a recycling plant to enable an experimental validation in an industrial setting. Efficiency and a high level of usability are top priorities.

In February 2016, Fraunhofer ILT launched the sister project i-Recycle, scheduled to run until 2019. Its goal is to collect old, no longer used cell phones from the Fraunhofer-Gesellschaft for the ADIR project and to make them available for testing and research and development work.

Independence Through Combined Expertise

The ADIR consortium comprises laser and automation process developers as well as metal recycling experts. Their objective is to achieve sustainable, practical recovery of raw and other materials from used electronics. “Strategically, it’s also about reducing the EU’s dependence on resources and expensive material imports,” says project manager Dr. Cord Fricke-Begemann from Fraunhofer ILT. Making phones available for testing and jointly developing next-generation recycling: with its ADIR and i-Recycle projects, the Fraunhofer-Gesellschaft is taking on a leading role in the up-and-coming field of urban mining.

Details of the projects and the latest information on their progress can be found on our website:

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT
Further information:

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>