Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rapid, paper-based diagnostic test for tuberculosis

07.10.2013
In a study published in the journal Science and Technology of Advanced Materials (STAM), researchers in Taiwan describe a simple, color-based diagnostic approach with the potential to detect target DNA sequences found in TB-causing mycobacteria – in just a fraction of the time required for established diagnostic tests.

More than a century after the identification of organisms that cause tuberculosis (TB), this disease remains a global public health challenge. According to World Health Organization estimates, there were 8.7 million new cases in 2011 and 1.4 million deaths. Most new cases occur in developing countries that lack the facilities and trained personnel required for early detection of TB.

In a new study, published in the journal Science and Technology of Advanced Materials (STAM), researchers in Taiwan describe a simple, color-based diagnostic approach with the potential to detect target DNA sequences found in TB-causing mycobacteria – in just a fraction of the time required for established diagnostic tests.

The standard method for TB detection in a clinical setting involves culturing the Mycobacterium tuberculosis bacillus, which requires 3-6 weeks to grow on solid culture media or 9-16 days in rapid liquid culture media. A faster alternative is the polymerase chain reaction (PCR) technology. However, it is still too slow (turnaround time 2-5 hours) and requires sophisticated infrastructure and trained personnel that might be unavailable in developing countries.

In their STAM paper, Tsung-Ting Tsai and colleagues employed gold nanoparticles and microfluidic paper-based analytical devices to achieve rapid diagnosis without the need for complex and time-consuming laboratory processes. They easily detected TB mycobacterium target sequences, and the turnaround time was approximately 1 hour after the human DNA was extracted from patients.

Although the authors are still optimizing their technology, they already believe that it will result in “affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and highly end-user-deliverable diagnostic applications”.

For more information about this research, please contact:

Media contacts:
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Journal information
[1] Tsung-Ting Tsai et al, Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles, Sci. Technol. Adv. Mater. 14 (2013) 044404

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>