Green plants reduce city street pollution up to 8 times more than previously believed

Thomas Pugh and colleagues explain that concentrations of nitrogen dioxide (NO2) and microscopic particulate matter (PM) — both of which can be harmful to human health — exceed safe levels on the streets of many cities. Past research suggested that trees and other green plants can improve urban air quality by removing those pollutants from the air.

However, the improvement seemed to be small, a reduction of less than 5 percent. The new study sought a better understanding of the effects of green plants in the sometimes stagnant air of city streets, which the authors term “urban street canyons.”

The study concluded that judicious placement of grass, climbing ivy and other plants in urban canyons can reduce the concentration at street level of NO2 by as much as 40 percent and PM by 60 percent, much more than previously believed. The authors even suggest building plant-covered “green billboards” in these urban canyons to increase the amount of foliage. Trees were also shown to be effective, but only if care is taken to avoid trapping pollutants beneath their crowns.

The authors acknowledge funding from the UK Engineering and Physical Sciences Research Council Sustainable Urban Environment program.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors