Research breakthrough pinpoints aim of ion beams fired at cancer tumors

Nonsurgical cancer therapy that destroys tumors but leaves healthy surrounding tissue intact could be available at every hospital if research reported this week in the journal Nature eventually comes to fruition.


The Los Alamos National Laboratory Trident laser team, in collaboration with researchers from the University of Nevada, Reno and elsewhere, has succeeded in concentrating the intensity of a laser-driven carbon ion beam into a narrow range.

This work builds upon past research led by the University of Nevada that discovered much higher quality laser proton beams from laser acceleration as opposed to conventional particle acceleration.

Producing carbon ion beams and limiting their spread removes the major impediment to improving such applications as tumor irradiation therapy.

Many technological challenges still have to be met to develop a compact particle generator that could be used in a hospital setting. No clinical trials are imminent.

This research also opens up opportunities for advances in nuclear fusion applications.

The article, “Laser acceleration of monenergetic MeV ion beams,” will be published Jan. 26. This research was supported by the Los Alamos National Laboratory Directed Research and Development program. The University of Nevada was also supported by the Department of Energy’s National Nuclear Security Administration through the University of Nevada.

Media Contact

Melanie Robbins EurekAlert!

More Information:

http://www.unr.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors