Radiofrequency ablation is effective long-term treatment for kidney tumors

Tumor control persists four to six years, could be treatment of choice for certain patients


Massachusetts General Hospital (MGH) researchers have shown that radiofrequency ablation (RFA) – a minimally invasive way of destroying tissue – is an effective, longlasting treatment for small kidney tumors in selected patients. In a followup to research published in 2003, the investigators found that RFA treatment of renal cell carcinoma, the most common kidney cancer, continued to be successful 4 to 6 years after administration. The report appears in the July issue of the Journal of Urology. “This study shows, for the first time, that this is a very effective long-term treatment,” says W. Scott McDougal, MD, chief of Urology at MGH and lead author of the study. Renal cell carcinoma will be diagnosed in almost 32,000 Americans this year and is most frequently treated with surgical removal through either an open or laparoscopic procedure.

RFA delivers heat generated by electrical energy to sites within the body through a thin needle, similar to probes used in biopsy procedures. Placement of the probe is guided by CT scan, ultrasound or other imaging techniques. Widely used to treat cardiac arrhythmias, RFA is also being investigated for destruction of small liver tumors and has been used for more than ten years to treat a benign bone tumor called osteoid osteoma.

For more than six years MGH physicians have been using RFA to treat kidney tumors in patients for whom surgical removal was not an option because of other health concerns. For the current study, the research team reviewed information on 16 of the first patients treated with the technique; three patients had multiple tumors, making a total of 20 tumors treated.

In the four years following their treatment, five patients whose treatment was initially successful died from causes unrelated to kidney cancer. Of the 11 remaining patients, none had any recurrence or metastasis of the kidney tumor 4 to 6 years after treatment. Overall, treatment of all tumors on the surface of the kidney was successful, as was the treatment of tumors deep within the kidney, which sometimes requires additional treatments. Two patients had what are called mixed tumors, and only one of them was treated successfully. Although treatment of the other mixed-tumor patient did not reduce the size of the lesion, that patient died of an unrelated brain tumor a year after treatment.

McDougal adds that the MGH team now has used RFA to treat a total of 100 renal cell carcinomas in 85 patients with similar results – successful tumor destruction in 100 percent of surface tumors and 78 percent of central tumors. “Right now, older patients with small lesions in limited areas of their kidneys are good candidates for this procedure. We need to wait for 10-year followup information to determine whether it will be appropriate for patients with a longer life expectancy.” McDougal is the Walter S. Kerr, Jr. Professor of Urology at Harvard Medical School.

The report’s co-authors are Francis McGovern, MD, MGH Urology, and Debra Gervais, MD, and Peter R. Mueller, MD, of the MGH Department of Radiology.

Media Contact

Sue McGreevey EurekAlert!

More Information:

http://www.mgh.harvard.edu/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors