Food Scientists Confirm the Effectiveness of Commercial Product in Killing Bacteria in Vegetable Washwater

The product, sold commercially as FIT Fruit and Vegetable Wash, not only proved much more effective than the commonly used chlorine dioxide but is made from ingredients like citric acid and distilled grapefruit oil that are generally regarded as safe.

Chlorine dioxide, whose use in food plants can put workers at risk, was compromised by soils and plant debris in the washwater and killed only 90 percent of the target organisms in the food plant and followup laboratory studies. By contrast, FIT killed 99.9999 percent, according to associate professor of food science Dong-Hyun Kang of Washington State University. “If you had a million bacteria, you would have one left.”

The research—unusual because part of it was conducted under real-world conditions in an Idaho freshpack potato operation—will be published by the Journal of Food Science in August and is currently available at www.blackwell-synergy.com/toc/jfds/0/0. University of Idaho Extension food scientist Jeff Kronenberg said the researchers chose potatoes for their study because their dirt-laden washwater poses the greatest challenge to products designed to control microbial contamination—not because of any food-safety threat potatoes pose. Indeed, Kronenberg said, “We have historically had zero problems with food-borne diseases in potatoes that are sold in grocery stores and restaurants because they’re cooked.”

Kronenberg believes FIT should be further investigated for fresh produce that has been associated with food-borne illness—including lettuce, spinach, tomatoes, cilantro, parsley and other leafy vegetables—where it is has the potential to save lives.

According to Kang, most food-processing firms cleanse their produce in flumes that operate as aquatic conveyor belts. “If a pathogen is introduced in the washwater, it will grow and continuously contaminate the new produce,” he said. With 15 years of experience, Kang has found it “very, very difficult” to control disease-causing organisms in flume water and said he “didn’t expect this kind of reduction. I’m really happy to see it.”

WSU research technologist Peter Gray agreed, noting that the bacteria were “knocked down below the detection limit almost instantaneously” in the FIT treatments.

Media Contact

Marlene Fritz EurekAlert!

More Information:

http://www.uidaho.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors