Groundbreaking research reveals clues to the formation of hearts, intestines and other key organs

“This research gives us hints to looping morphogenesis, how organs form from a single tube to the rotating structure of intestines,” said Natasza Kurpios, assistant professor of Molecular Medicine at the College of Veterinary Medicine at Cornell. Kurpios co-authored the study, “On the growth and form of the gut” in the current issue of Nature. Her co-authors are Thierry Savin, Amy E. Shyer, Patricial Florescu, Haiyi Liang, L. Mahadevan and Clifford J. Tabin, all of Harvard Medical School and Harvard University.

Kurpios and her co-authors developed a model that mimics how developing intestines in vertebrates form the characteristic looped pattern in the body cavity. That model not only provides a template for organ asymmetry; it also could lead to better diagnosis of veterinary and human maladies such as malrotation of the intestines in babies and gastric torsion in large-breed dogs such as Labrador retrievers. “By understanding the patterns of loops, we could better identify and more accurately diagnose these conditions,” Kurpios said. “This also gives us hints to the formation of other organs, such as the heart and the vascular system.”

The paper is posted online at: http://www.nature.com/nature/index.html

For an electronic copy of the paper, contact Joe Schwartz at the Cornell Press Relations Office: Joe.Schwartz@cornell.edu or (607) 254-6235.

Contact Joe Schwartz for information about Cornell's TV and radio studios.

Media Contact

Joe Schwartz EurekAlert!

More Information:

http://www.cornell.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors