Virus-resistant grapevines

Extremely hot or rainy periods can destroy entire crops, not to mention the wide variety of pests that can appear on the scene. Bugs such as the vine louse or the rust mite, fungi such as mildew, or viruses such as the “Grapevine fanleaf virus” (GFLV for short) can give the vines a hard time.

The GFLV infects the grapevine and causes fanleaf disease, resulting in deformed and very yellowed leaves, smaller grapes and crop loss.

However, there will soon be a cure for GFLV infections: Researchers at the Fraunhofer Institute for Molecular Biology and Applied Ecology IME in Aachen are making certain plants resistant to the GFLV by genetic engineering. “Our modified plants produce antibodies,” explains Dr. Stefan Schillberg, head of department at the IME. “These antibodies 'recognize' the viruses and prevent them from spreading in the plant and causing damage.”

To enable the plant to produce the antibodies, the scientists have to modify its genotype and channel genetic information for the antibodies into it. This task is performed by tiny helpers called agrobacteria, which genetic engineers have been using for over twenty years. These are soil bacteria that inherently transfer parts of their own genome to that of the plant. Using simple routine processes, the researchers introduce the antibody gene into the bacteria, which then act as a transport vehicle and carry it over to the vine.

The researchers are still testing this process on model plants, and the first results show that their modified versions are up to 100 percent resistant to the virus. “The antibody is produced very effectively inside the plants,” says Schillberg. “The next step on the agenda is to test the method on actual grapevines and then to carry out field tests.” The scientists' long-term goal is to curb the use of pesticides.

“Certain pesticides are necessary to fight GFLV infections,” Schillberg explains. But they often only have a limited effect. They are also harmful to the environment and therefore banned in many regions. Countries like Chile, for example, which depend strongly on their winegrowing business, could benefit enormously from the pathogen-resistant grapevines and improve their crop yields.

Media Contact

Stefan Schillberg EurekAlert!

More Information:

http://www.ime.fraunhofer.de

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors