Powerful mold-inhibiting bacteria patented

Bacteria that produce lactic acid have been used for thousands of years to preserve food. Some lactic acid bacteria also produce several other mold-inhibiting substances and are therefore of special interest to agriculture and the foodstuffs industry. This is demonstrated in a dissertation by Jörgen Sjögren from the Swedish University of Agricultural Sciences, SLU. One of the bacteria strains studied has been patented and will be part of a new biological conservation preparation.


Humans have long used different micro-organisms to season and conserve foods. The Sumerians, for example, used yeast fungus to make beer 4,000 years ago. Other micro-organisms that humans have utilized for a long time are lactic acid bacteria and propionic acid bacteria. Lactic acid bacteria have been used to make cultured milk, cheese, yoghurt, and fermented sausage, and they are also put to work in silaging. Propionic acid bacteria have primarily been exploited in the production of certain large-hole cheeses, such as Swedish Grevé and Emmental.

Jörgen Sjögren has studied the fungus-inhibiting function of a number of strains of lactic acid bacteria and propionic acid bacteria in order to find strains that can be used to inhibit the growth of mold in silage, for instance. It has long been known that lactic acid bacteria and propionic acid bacteria produce the organic acids lactic acid, acetic acid, and propionic acid. All of these acids can inhibit mold fungi, but Jörgen Sögren and his associates have also seen that certain lactic acid bacteria and propionic acid bacteria moreover produce other substances (metabolites) with fungus-inhibiting properties. Twelve such substances are reported in the dissertation.

One lactic acid bacterium (Lactobacillus plantarum MiLAB 393) has been patented, and the rights have been sold to Medipharm, which this year is launching a biological conservation agent for silage in Europe.

An important element of the dissertation work involved finding an efficient method of isolating the fungus-inhibiting substances of bacteria, a method that is based on growing cultures in a water-based substrate, followed by centrifuging, filtering, stepwise fractionating, and finally determining the structure with the aid of nuclear magnetic resonance (NMR) and mass spectrometry (MS).

Media Contact

David Stephanson alfa

More Information:

http://www.slu.se

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors