Precision Agriculture for Small Scale Farming Systems

The principles are the same no matter the location: use the right input, at the right time, at the right place, and in the right amount. How those principles are applied varies from field to field, country to country and farmer to farmer, but almost always impacts outcomes.

Khosla will present “Precision Agriculture for Small Scale Farming Systems” on Wednesday, Nov. 6, 2013 at 9:30 AM. The presentation is part of the American Society of Agronomy, Crop Science Society of America, and the Soil Science Society of America Annual Meetings, Nov. 3-7 in Tampa, Florida. The theme of this year’s conference is “Water, Food, Energy, & Innovation for a Sustainable World” (https://www.acsmeetings.org/). Members of the media receive complimentary registration to the joint meetings.

According to Khosla, “precision agriculture is a grossly misunderstood field, due to its development over time in large scale farming systems. The principles and concepts of precision agriculture are not only for large farms using large equipment. They can be applied to a farm of 2 acres or 2,000 acres.” He prefers to call it “smart agriculture” or “appropriate agriculture.”

“The examples we have from Africa, Asia, and South America show impacts in improving yields even greater than that in the US,” says Khosla. In Zimbabwe, simple tactics like using current labor forces and harnessing good techniques tripled yields in one study.

“Global food security is a huge issue,” says Khosla. “Smart agriculture is very much a part of the solution, but it is not the only solution.”

If you would like a 1-on-1 interview with Dr. Khosla, contact Susan Fisk at the email above.

Media Contact

Susan V. Fisk Newswise

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors