Improved Loblolly Pines Better for the Environment, Study Finds

“We’ve been working to create trees that grow faster and produce more wood, and what this research shows is that at the same time we’re enhancing environmental quality by scrubbing as much carbon out of the atmosphere as we possibly can,” says Dr. John King, an NC State forest ecologist and co-author of a paper published this month in the journal Forest Science.

The study estimated a 17 percent increase in stem-wood production and a 13 percent increase in carbon uptake in improved loblolly pines planted throughout the Southeast between 1968 and 2007. Three generations of enhanced seedlings were released over that 40-year period.

Pine plantations cover about 15 percent of forested land in the South. Each year, almost a billion loblolly pine seedlings are planted, typically taking 25 years to reach maturity.

“We’re reaping the benefits today of work our predecessors did, and our work will affect our children and grandchildren,” says co-author Dr. Steve McKeand, NC State forestry professor and director of the Cooperative Tree Improvement Program, a public/private partnership founded in 1956.

The study marks one of the first attempts to quantify the effects of improved tree genetics on carbon sequestration across a large landscape, McKeand and King say.

The lead author of the study, Dr. Mike Aspinwall of the University of Texas at Austin, worked with McKeand and King while completing his doctorate at NC State.

Media Contact

D'Lyn Ford EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors